Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Rejuvenation of crustal magma mush: A tale of multiply nested processes and timescales

Frank J. Spera and Wendy A. Bohrson
American Journal of Science January 2018, 318 (1) 90-140; DOI: https://doi.org/10.2475/01.2018.05
Frank J. Spera
* Department of Earth Science & Earth Research Institute, University of California, Santa Barbara, California 93106,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: spera@geol.ucsb.edu spera@geol.ucsb.edu
Wendy A. Bohrson
** Department of Geological Sciences, Central Washington University, 400 E. University Way, Ellensburg, Washington 98926,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bohrson@geology.cwu.edu
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Some relatively crystal rich silicic volcanic deposits, including large volume ignimbrites, preserve evidence of a history where a rheologically locked high crystallinity magma was rejuvenated (unlocked) through enthalpy (± mass) exchange with newly injected recharge magma of higher specific enthalpy. This is one event in a possible complex history. That is, the volcanic product of an eruption reflects an array of sequential and nested processes including melt formation and segregation, ascent, cooling, crystallization, crustal assimilation, magma recharge, unlocking, shallow ascent, fluid exsolution, and eruption. Deconvolution of these these nested processes and concomitant timescales is complicated and relies on a multidisciplinary approach; studies that do not clearly associate process and correlated timescale have the potential to provide misleading timescale information. We report the results of thermodynamic and heat transfer calculations that document mass, energy, and phase equilibria constraints for the unlocking of near-solidus rhyolite mush via magma mingling (heat exchange only) with basaltic recharge magma of higher specific enthalpy. To achieve unlocking, defined as the transition from near-solidus to ∼50 percent melt of the host silicic magma, phase equilibria computations provide (1) the enthalpy required to unlock mush, (2) the mass ratio of recharge magma to mush (MR/MM) when the two magmas achieve thermal equilibrium, and (3) the changes in melt, mineral, and fluid phase masses, compositions, and temperatures during the approach to unlocking. The behavior of trace elements is computed with knowledge of mineral, fluid, and melt proportions and solid-fluid and solid-melt partition coefficients. Evaluation of unlocking for relatively ‘dry’ (0.5 wt. % H2O) and ‘wet’ (3.9 wt. % H2O) rhyolitic mushy (locked) magma by basaltic recharge at upper crustal pressures indicates minimum values of MR/MM can be significantly less than 1, assuming the mingling process is isenthalpic with no ‘waste’ heat. For active volcanic systems estimates of MR may be tested using geodetic data. Wet mush has lower energy requirements for unlocking and thus requires lower MR/MM than dry mush. Wet rejuvenated magmas therefore may be more abundant in the volcanic rock record, and unlocked dry mushes may be restricted to extensional tectonic settings with high recharge flux. Temperature changes in dry mush as it unlocks are pronounced (greater than 150 °C) compared to those in wet mush, which are smaller than the resolution of classical geothermometry (∼15 °C). Phase equilibria calculations show that, as required, the net volume of crystals decreases during unlocking. Interestingly, calculations also indicate reactive crystal growth by chemical re-equilibration at the crystal-size scale during unlocking may also take place. In either dissolution by unidirectional resorption or reactive dissolution/ new growth, the chemical signatures of unlocking, potentially preserved in crystals or parts of crystals (for example, rims), are predictable and hence testable. Independent of unlocking thermodynamics, the phase equilibria and elemental consequences of isentropic magma ascent, a transport event that follows unlocking, can also be predicted; detailed examination of several canonical cases reveals a marked contrast with isenthalpic unlocking, thereby providing a means of process deconvolution. Unlocking timescales are estimated by two methods, one that calculates the time to reach thermal equilibrium for recharge magma dispersed in mush as ‘clumps’ of fixed size, and the second where the required volume of recharge magma is initially a single clump and evolves to smaller size through clump stretching and folding. For a range of magma volumes from 0.1 to 5000 km3, unlocking times range from 10−2 to 106 years. The shorter timescales for any magma volume requires a large number of relatively small clumps (n >106), which implies that large volumes of mush purported to unlock over short timescales (102–103 years and less) should preserve and exhibit evidence of intimate magma mingling. The key result of our analysis is that multiple timescales are operative during the potentially long and complex history of silicic mush formation, rejuvenation, and ascent. To correctly ascribe timescales to unlocking requires a holistic understanding of the myriad processes that affect the magma before, during, and after enthalpy exchange. In the absence of this context, unlocking timescales may be incorrectly constrained which, in turn, may hinder eruption forecasting and associated hazard mitigation.

  • mush defrosting
  • magma thermal rejuvenation
  • magma mingling
  • mobilization of mush
  • thermodynamics of magma rejuvenation
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

American Journal of Science: 318 (1)
American Journal of Science
Vol. 318, Issue 1
1 Jan 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Rejuvenation of crustal magma mush: A tale of multiply nested processes and timescales
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Rejuvenation of crustal magma mush: A tale of multiply nested processes and timescales
Frank J. Spera, Wendy A. Bohrson
American Journal of Science Jan 2018, 318 (1) 90-140; DOI: 10.2475/01.2018.05

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Rejuvenation of crustal magma mush: A tale of multiply nested processes and timescales
Frank J. Spera, Wendy A. Bohrson
American Journal of Science Jan 2018, 318 (1) 90-140; DOI: 10.2475/01.2018.05
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • BACKGROUND ON SILICIC MAGMA REJUVENATION
    • UNLOCKING SILICIC MAGMAS: CHRONOLOGY OF PROCESSES AND DIVERSITY OF TIMESCALES
    • ENERGETIC, PHASE EQUILIBRIA, AND ELEMENTAL CONSTRAINTS ON UNLOCKING AND DECOMPRESSING RHYOLITE MUSH
    • UNLOCKING TIMESCALE ANALYSIS
    • SYNOPSIS AND IMPLICATIONS
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX A
    • APPENDIX B
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • mush defrosting
  • magma thermal rejuvenation
  • magma mingling
  • mobilization of mush
  • thermodynamics of magma rejuvenation

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire