Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Arc crust formation and differentiation constrained by experimental petrology

Othmar Müntener and Peter Ulmer
American Journal of Science January 2018, 318 (1) 64-89; DOI: https://doi.org/10.2475/01.2018.04
Othmar Müntener
* Institute of Earth Sciences, Géopolis 4897, CH-1015 Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: othmar.muntener@unil.ch
Peter Ulmer
** Institute of Geochemistry and Petrology, ETH, Clausiusstrasse 25, CH-8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. Alonso Perez, 2006.↵
    1. Alonso Perez R.
    , ms, 2006, The role of garnet in the evolution of hydrous, calc-alkaline magmas: An experimental study at 0.8 – 1.5 GPa: Zurich, Switzerland, ETH Zürich, Ph. D. thesis, 174 p., doi:https://doi.org/10.3929/ethz-a-005414579
    OpenUrlCrossRef
  2. Alonso Perez and others 2009.↵
    1. Alonso Perez R.,
    2. Müntener O.,
    3. Ulmer P.
    , 2009, Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids: Contributions to Mineralogy and Petrology, v. 157, p. 541–558, doi:https://doi.org/10.1007/s00410-008-0351-8
    OpenUrlCrossRefGeoRefWeb of Science
  3. Anderson, 1979.↵
    1. Anderson A. T. Jr..
    , 1979, Water in some hypersthenic magmas: Journal of Geology, v. 87, n. 5, p. 509–531, doi:https://doi.org/10.1086/628443
    OpenUrlCrossRefGeoRefWeb of Science
  4. Annen and Sparks, 2002.↵
    1. Annen C.,
    2. Sparks R. S. J.
    , 2002, Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust: Earth and Planetary Science Letters, v. 203, n. 3–4, p. 937–955, doi:https://doi.org/10.1016/S0012-821X(02)00929-9
    OpenUrlCrossRefGeoRefWeb of Science
  5. Arculus, 1981.↵
    1. Arculus R. A.
    , 1981, Aspects of magma genesis in arcs: Lithos, v. 33, n. 1–3, p. 189–208, doi:https://doi.org/10.1016/0024-4937(94)90060-4
    OpenUrlCrossRef
  6. Arndt and Goldstein, 1989.↵
    1. Arndt N. T.,
    2. Goldstein S. L.
    , 1989, An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling: Tectonophysics, v. 161, n. 3–4, p. 201–212, doi:https://doi.org/10.1016/0040-1951(89)90154-6
    OpenUrlCrossRefGeoRefWeb of Science
  7. Baker and others 1994.↵
    1. Baker M. B.,
    2. Grove T. L.,
    3. Price R.
    , 1994, Primitive basalts and andesites from the Mt. Shasta region, N. California: Products of varying melt fraction and water content: Contributions to Mineralogy and Petrology, v. 118, n. 2, p. 111–129, doi:https://doi.org/10.1007/BF01052863
    OpenUrlCrossRefGeoRefWeb of Science
  8. Beard and Lofgren, 1991.↵
    1. Beard J. S.,
    2. Lofgren G. E.
    , 1991, Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb: Journal of Petrology, v. 32, n. 2, p. 365–401, doi:https://doi.org/10.1093/petrology/32.2.365
    OpenUrlCrossRefGeoRefWeb of Science
  9. Bédard, 2006.↵
    1. Bédard J. H.
    , 2006, A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle: Geochimicaet Cosmochimica Acta, v. 70, n. 5, p. 118–1214, doi:https://doi.org/10.1016/j.gca.2005.11.008
    OpenUrlCrossRef
  10. Bédard and others 2013.↵
    1. Bédard J. H.,
    2. Harris L. B.,
    3. Thurston P. C.
    , 2013, The hunting of the snArc: Precambrian Research, v. 229, p. 20–48, doi:https://doi.org/10.1016/j.precamres.2012.04.001
    OpenUrlCrossRefGeoRefWeb of Science
  11. Bird, 1979.↵
    1. Bird P.
    , 1979, Continental Delamination and the Colorado Plateau: Journal of Geophysical Research-Solid Earth, v. 84, n. B13, p. 7561–7571, doi:https://doi.org/10.1029/JB084iB13p07561
    OpenUrlCrossRef
  12. Blatter and others 2013.↵
    1. Blatter D. L.,
    2. Sisson T. W.,
    3. Hankins W. B.
    , 2013, Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: Implications for andesite genesis: Contributions to Mineralogy and Petrology, v. 166, n. 3, p. 861–886, doi:https://doi.org/10.1007/s00410-013-0920-3
    OpenUrlCrossRefGeoRefWeb of Science
  13. Bowen, 1915a.↵
    1. Bowen N. L.
    , 1915a, Crystallization - Differentiation in silicate liquids: American Journal of Science, Fourth Series, v. 39, p. 175–191, doi:https://doi.org/10.2475/ajs.s4-39.230.175
    OpenUrlCrossRef
  14. Bowen, 1915b.↵
    1. Bowen N. L.
    1915b, The crystallization of haplobasaltic, haplodioritic and related magmas: American Journal of Science, Fourth Series, v. 40, p. 161–185, doi:https://doi.org/10.2475/ajs.s4-40.236.161
    OpenUrlCrossRef
  15. Bowen, 1928.↵
    1. Bowen N. L.
    1928, The evolution of the igneous rocks: Princeton, New Jersey, Princeton University Press, 332 p.
  16. Burg, 2011.↵
    1. Brown D.,
    2. Ryan P. D.
    1. Burg J.-P.
    , 2011, The Asia–Kohistan–India Collision: Review and Discussion, in Brown D., Ryan P. D., editors, Arc-continent collision, Frontiers in Earth Sciences: Berlin Heidelberg, Springer, p. 279–309, doi:https://doi.org/10.1007/978-3-540-88558-0_10
    OpenUrlCrossRef
  17. Cawthorn and Brown, 1976.↵
    1. Cawthorn R. G.,
    2. Brown P. A.
    , 1976, A model for the formation and crystallization of corundum-normative calc-alkaline magmas through amphibole fractionation: Journal of Geology, v. 84, n. 4, p. 467–476, doi:https://doi.org/10.1086/628212
    OpenUrlCrossRef
  18. Cawthorn and others 1973.↵
    1. Cawthorn R. G.,
    2. Curran E. B.,
    3. Arculus R. J.
    , 1973, A petrogenetic model for the origin of the calc-alkaline suite of Grenada, Lesser Antilles: Journal of Petrology, v. 14, n. 2, p. 327–337, doi:https://doi.org/10.1093/petrology/14.2.327
    OpenUrlCrossRefGeoRefWeb of Science
  19. Clemens and others 2011.↵
    1. Clemens J. D.,
    2. Stevens G.,
    3. Farina F.
    , 2011, The enigmatic sources of I-type granites: The peritectic connexion: Lithos, v. 126, n. 3–4, p. 174–181, doi:https://doi.org/10.1016/j.lithos.2011.07.004
    OpenUrlCrossRefGeoRefWeb of Science
  20. Davidson and Arculus, 2005.↵
    1. Brown M.,
    2. Rushmer T.
    1. Davidson J. P.,
    2. Arculus R. J.
    , 2005, The significance of Phanerozoic arc magmatism in generating continental crust, in Brown M., Rushmer T., editors, Evolution and Differentiation of the Continental Crust: Cambridge, England, Cambridge University Press, p. 135–172.
  21. Davidson and others 2007.↵
    1. Davidson J. P.,
    2. Morgan D. J.,
    3. Charlier B. L. A.,
    4. Harlou R.,
    5. Hora J. M.
    , 2007, Microsampling and isotope analysis of igneous rocks: Implications for the study of magmatic systems: Annual Review of Earth and Planetary Sciences, v. 35, p. 273–311, doi:https://doi.org/10.1146/annurev.earth.35.031306.140211
    OpenUrlCrossRefGeoRefWeb of Science
  22. DeBari and Sleep, 1991.↵
    1. DeBari S. M.,
    2. Sleep N. H.
    , 1991, High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: Implications for primary magmas and the nature of arc crust: Geological Society of America Bulletin, v. 103, n. 1, p. 37–47, doi:https://doi.org/10.1130/0016-7606(1991)103<0037:HMLABC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  23. Dhuime and others 2007.↵
    1. Dhuime B.,
    2. Bosch D.,
    3. Bodinier J. L.,
    4. Garrido C. J.,
    5. Bruguier O.,
    6. Hussain S. S.,
    7. Dawood H.
    , 2007, Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): Implications for building the roots of island arcs: Earth and Planetary Science Letters, v. 261, n. 1–2, p. 179–200, doi:https://doi.org/10.1016/j.epsl.2007.06.026
    OpenUrlCrossRefGeoRefWeb of Science
  24. du Bray and others 2006.↵
    1. du Bray E. A.,
    2. John D. A.,
    3. Sherrod D. R.,
    4. Evarts R. C.,
    5. Conrey R. M.,
    6. Lexa J.
    , 2006, Geochemical Database for Volcanic Rocks of the Western Cascades, Washington, Oregon, and California: U.S. Geological Survey Data Series 155, p. 49.
  25. Dufek and Bergantz, 2005.↵
    1. Dufek J.,
    2. Bergantz G. W.
    , 2005, Lower Crustal Magma Genesis and Preservation: A Stochastic Framework for the Evaluation of Basalt–Crust Interaction: Journal of Petrology, v. 46, n. 11, p. 2167–2195, doi:https://doi.org/10.1093/petrology/egi049
    OpenUrlCrossRefGeoRefWeb of Science
  26. Eichelberger, 1975.↵
    1. Eichelberger J. C.
    , 1975, Origin of andesite and dacite: Evidence of mixing at Glass Mountain in California and at other circum-Pacific volcanoes: Geological Society of America Bulletin, v. 86, n. 10, p. 1381–1391, doi:https://doi.org/10.1130/0016-7606(1975)86<1381:OOAADE>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  27. Garrido and others 2006.↵
    1. Garrido C. J.,
    2. Bodinier J. L.,
    3. Burg J.-P.,
    4. Zeilinger G.,
    5. Hussain S. S.,
    6. Dawood H.,
    7. Chaudry M. N.,
    8. Gervilla F.
    , 2006, Petrogenesis of mafic garnet granulite in the the lower crust of the Kohistan Paleo-arc complex (Northern Pakistan): Implications for intra-crustal differentiation of island arcs and generation of continental crust: Journal of Petrology, v. 47, n. 10, p. 1873–1914, doi:https://doi.org/10.1093/petrology/egl030
    OpenUrlCrossRefGeoRefWeb of Science
  28. Gerya and Yuen, 2003.↵
    1. Gerya T. V.,
    2. Yuen D. A.
    , 2003, Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones: Earth and Planetary Science Letters, v. 212, n. 1–2, p. 47–62, doi:https://doi.org/10.1016/S0012-821X(03)00265-6
    OpenUrlCrossRefGeoRefWeb of Science
  29. Gill, 1981.↵
    1. Gill J. B.
    , 1981, Orogenic Andesites and Plate Tectonics: Berlin, Springer, Minerals and Rocks Book Series, v. 16, 390 p., doi:https://doi.org/10.1007/978-3-642-68012-0
    OpenUrlCrossRef
  30. Glazner, 1994.↵
    1. Glazner A. F.
    , 1994, Foundering of mafic plutons and density stratification of continental crust: Geology, v. 22, n. 5, p. 435–438, doi:https://doi.org/10.1130/0091-7613(1994)022<0435:FOMPAD>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  31. Greene and others 2006.↵
    1. Greene A. R.,
    2. DeBari S. M.,
    3. Kelemen P. B.,
    4. Blusztain J.,
    5. Clift P. D.
    , 2006, A detailed geochemical study of island arc crust: The Talkeetna arc section, south-central Alaska: Journal of Petrology, v. 47, n. 6, p. 1051–1093, doi:https://doi.org/10.1093/petrology/egl002
    OpenUrlCrossRefGeoRefWeb of Science
  32. Grove and others 2002.↵
    1. Grove T. L.,
    2. Parman S. W.,
    3. Bowring S. A.,
    4. Price R. C.,
    5. Baker M. B.
    , 2002, The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California: Contributions to Mineralogy and Petrology, v. 142, n. 4, p. 375–396, doi:https://doi.org/10.1007/s004100100299
    OpenUrlCrossRefGeoRefWeb of Science
  33. Grove and others 2005.↵
    1. Grove T. L.,
    2. Baker M. B.,
    3. Price R. C.,
    4. Parman S. W.,
    5. Elkins-Tanton L. T.,
    6. Chatterjee N.,
    7. Müntener O.
    , 2005, Magnesian andesite and dacite lavas from Mt. Shasta, northern California: Products of fractional crystallization of H2O-rich mantle melts: Contributions to Mineralogy and Petrology, v. 148, n. 5, p. 542–565, doi:https://doi.org/10.1007/s00410-004-0619-6
    OpenUrlCrossRefGeoRefWeb of Science
  34. Hacker and others 2008.↵
    1. Hacker B. R.,
    2. Mehl L.,
    3. Kelemen P. B.,
    4. Rioux M.,
    5. Behn M. D.,
    6. Luffi P.
    , 2008, Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry: Journal of Geophysical Research-Solid Earth, v. 113, p. 1–16, B03204, doi:https://doi.org/10.1029/2007JB005208
    OpenUrlCrossRef
  35. Hacker and others 2011.↵
    1. Hacker B. R.,
    2. Kelemen P. B.,
    3. Behn M. D.
    , 2011, Differentiation of the continental crust by relamination: Earth and Planetary Science Letters, v. 307, n. 3–4, p. 501–516, doi:https://doi.org/10.1016/j.epsl.2011.05.024
    OpenUrlCrossRefGeoRefWeb of Science
  36. Hall and others 2004.↵
    1. Hall L. J.,
    2. Brodie J.,
    3. Wood B. J.,
    4. Carroll M. R.
    , 2004, Iron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature: Mineralogical Magazine, v. 68, n. 1, p. 75–81, doi:https://doi.org/10.1180/0026461046810172
    OpenUrlAbstract/FREE Full Text
  37. Hildreth, 1983.↵
    1. Hildreth W.
    , 1983, The compositionally zoned eruption of 1912 in the valley of Ten Thousand smokes, Katmai National Park, Alaska: Journal of Volcanology and Geothermal Research, v. 18, n. 1–4, p. 1–156, doi:https://doi.org/10.1016/0377-0273(83)90003-3
    OpenUrlCrossRefGeoRefWeb of Science
  38. Hildreth and Moorbath, 1988.↵
    1. Hildreth W.,
    2. Moorbath S.
    , 1988, Crustal contributions to arc magmatism in the Andes of Central Chile: Contributions to Mineralogy and Petrology, v. 98, n. 4, p. 455–489, doi:https://doi.org/10.1007/BF00372365
    OpenUrlCrossRefGeoRefWeb of Science
  39. Hirose and Kushiro, 1993.↵
    1. Hirose K.,
    2. Kushiro I.
    , 1993, Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond: Earth and Planetary Science Letters, v. 114, n. 4, p. 477–489, doi:https://doi.org/10.1016/0012-821X(93)90077-M
    OpenUrlCrossRefGeoRefWeb of Science
  40. Hofmann, 1988.↵
    1. Hofmann A. W.
    , 1988, Chemical differentiation of the Earth: The relationships between mantle, continental crust, and oceanic crust: Earth and Planetary Science Letters, v. 90, n. 3, p. 297–314, doi:https://doi.org/10.1016/0012-821X(88)90132-X
    OpenUrlCrossRefGeoRefWeb of Science
  41. Holtz and others 1992.↵
    1. Holtz F.,
    2. Pichavant M.,
    3. Barbey P.,
    4. Johannes W.
    , 1992, Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar: American Mineralogist, v. 77, n. 11–12, p. 1223–1241.
    OpenUrl
  42. Hürlimann and others 2016.↵
    1. Hürlimann N.,
    2. Müntener O.,
    3. Ulmer P.,
    4. Nandedkar R.,
    5. Chiaradia M.,
    6. Ovtcharova M.
    , 2016, Primary Magmas in Continental Arcs and their Differentiated Products: Petrology of a Post-plutonic Dyke Suite in the Tertiary Adamello Batholith (Alps): Journal of Petrology, v. 57, n. 3, p. 495–533, doi:https://doi.org/10.1093/petrology/egw016
    OpenUrlCrossRef
  43. Jagoutz, 2014.↵
    1. Jagoutz O.
    , 2014, Arc crustal differentiation mechanisms: Earth and Planetary Science Letters, v. 396, p. 267–277, doi:https://doi.org/10.1016/j.epsl.2014.03.060
    OpenUrlCrossRefGeoRef
  44. Jagoutz and Behn, 2013.↵
    1. Jagoutz O.,
    2. Behn M. D.
    , 2013, Foundering of lower island-arc crust as an explanation for the origin of the continental Moho: Nature, v. 504, p. 131–135, doi:https://doi.org/10.1038/nature12758
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  45. Jagoutz and others 2006.↵
    1. Jagoutz O.,
    2. Müntener O.,
    3. Burg J.-P.,
    4. Ulmer P.,
    5. Jagoutz E.
    , 2006, Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan): Earth and Planetary Science Letters, v. 242, n. 3–4, p. 320–342, doi:https://doi.org/10.1016/j.epsl.2005.12.005
    OpenUrlCrossRefGeoRefWeb of Science
  46. Jagoutz and others 2007.↵
    1. Jagoutz O.,
    2. Müntener O.,
    3. Ulmer P.,
    4. Pettke T.,
    5. Burg J.-P.,
    6. Dawood H.,
    7. Hussain S. S.
    , 2007, Petrology and mineral chemistry of lower crustal intrusions: The Chilas complex, Kohistan (NW Pakistan): Journal of Petrology, v. 48, n. 10, p. 1895–1953, doi:https://doi.org/10.1093/petrology/egm044
    OpenUrlCrossRefGeoRefWeb of Science
  47. Jagoutz and others 2011.↵
    1. Jagoutz O.,
    2. Müntener O.,
    3. Schmidt M. W.,
    4. Burg J.-P.
    , 2011, The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc: Earth and Planetary Science Letters, v. 303, n. 1–2, p. 25–36, doi:https://doi.org/10.1016/j.epsl.2010.12.017
    OpenUrlCrossRefGeoRefWeb of Science
  48. Jan and Howie, 1980.↵
    1. Jan M. Q.,
    2. Howie R. A.
    , 1980, Ortho- and clinopyroxenes from the pyroxene granulites of Swat Kohistan, northern Pakistan: Mineralogical Magazine, v. 43, p. 715–726, doi:https://doi.org/10.1180/minmag.1980.043.330.04
    OpenUrlCrossRefGeoRefWeb of Science
  49. Jull and Kelemen, 2001.↵
    1. Jull M.,
    2. Kelemen P. B.
    , 2001, On the conditions for lower crustal convective instability: Journal of Geophysical Research, v. 106, n. B4, p. 6423–6446, doi:https://doi.org/10.1029/2000JB900357
    OpenUrlCrossRefGeoRefWeb of Science
  50. Kägi and others 2005.↵
    1. Kägi R.,
    2. Müntener O.,
    3. Ulmer P.,
    4. Ottolini L.
    , 2005, Piston cylinder experiments on H2O undersaturated Fe-bearing systems: An experimental setup approaching fO2 conditions of natural calc-alkaline magmas: American Mineralogist, v. 90, n. 4, p. 708–717, doi:https://doi.org/10.2138/am.2005.1663
    OpenUrlAbstract/FREE Full Text
  51. Kay and Kay, 1988.↵
    1. Kay R. W.,
    2. Kay S. M.
    , 1988, Crustal recycling and the Aleutian arc: Geochimica et Cosmochimica Acta, v. 52, n. 6, p. 1351–1359, doi:https://doi.org/10.1016/0016-7037(88)90206-2
    OpenUrlCrossRefGeoRefWeb of Science
  52. Kay and others 1982.↵
    1. Kay S. M.,
    2. Kay R. W.,
    3. Cijtron G. P.
    , 1982, Tectonic controls on tholeiitic and calc-alkaline magmatism in the Aleutian Arc: Journal of Geophysical Research, v. 87, n. B5, p. 4051–4072, doi:https://doi.org/10.1029/JB087iB05p04051
    OpenUrlCrossRefGeoRef
  53. Kelemen and others 2003.↵
    1. Rudnick R. L.
    1. Kelemen P. B.,
    2. Hanghøj K.,
    3. Greene A. R.
    , 2003, One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, in Rudnick R. L., editor, The crust: New York, Elsevier Science, Treatise on Geochemistry, v. 3, p. 593–659, doi:https://doi.org/10.1016/B0-08-043751-6/03035-8
    OpenUrlCrossRef
  54. Kress and Carmichael, 1991.↵
    1. Kress V. C.,
    2. Carmichael I. S. E.
    , 1991, The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states: Contributions to Mineralogy and Petrology, v. 108, n. 1–2, p. 82–92, doi:https://doi.org/10.1007/BF00307328
    OpenUrlCrossRefGeoRefWeb of Science
  55. Kushiro, 1975.↵
    1. Kushiro I.
    , 1975, On the nature of silicate melt and its significance in magma genesis: Regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals: American Journal of Science, v. 275, n. 4, p. 411–431, doi:https://doi.org/10.2475/ajs.275.4.411
    OpenUrlAbstract/FREE Full Text
  56. Melekhova and others 2015.↵
    1. Melekhova E.,
    2. Blundy J.,
    3. Robertson R.,
    4. Humphreys M. C. S.
    , 2015, Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent, Lesser Antilles: Journal of Petrology, v. 56, n. 1, p. 161–192, doi:https://doi.org/10.1093/petrology/egu074
    OpenUrlCrossRefGeoRef
  57. Miller and others 2007.↵
    1. Miller J. S.,
    2. Matzel J. E. P.,
    3. Miller C. F.,
    4. Burgess S. D.,
    5. Miller R. B.
    , 2007, Zircon growth and recycling during the assembly of large composite arc plutons: Journal of Volcanology and Geothermal Research, v. 167, n. 1–4, p. 282–299, doi:https://doi.org/10.1016/j.jvolgeores.2007.04.019
    OpenUrlCrossRefGeoRefWeb of Science
  58. Morse, 1976.↵
    1. Morse S. A.
    , 1976, The lever rule with fractional crystallization and fusion: American Journal of Science, v. 276, n. 3, p. 330–346, doi:https://doi.org/10.2475/ajs.276.3.330
    OpenUrlAbstract/FREE Full Text
  59. Moyen, 2011.↵
    1. Moyen J. F.
    , 2011, The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth: Lithos, v. 123, n. 1–4, p. 21–36, doi:https://doi.org/10.1016/j.lithos.2010.09.015
    OpenUrlCrossRefGeoRefWeb of Science
  60. Müntener and Ulmer, 2006.↵
    1. Müntener O.,
    2. Ulmer P.
    , 2006, Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust: Geophysical Research Letters, v. 33, n. 21, L21308, doi:10.1029/2006GL027629
    OpenUrlCrossRef
  61. Müntener and others 2001.↵
    1. Müntener O.,
    2. Kelemen P. B.,
    3. Grove T. L.
    , 2001, The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study: Contributions to Mineralogy and Petrology, v. 141, n. 6, p. 643–658, doi:https://doi.org/10.1007/s004100100266
    OpenUrlCrossRefGeoRefWeb of Science
  62. Nandedkar and others 2014.↵
    1. Nandedkar R. H.,
    2. Ulmer P.,
    3. Müntener O.
    , 2014, Fractional crystallization of primitive, hydrous arc magmas: An experimental study at 0.7 GPa: Contributions to Mineralogy and Petrology, v. 167, 1015, p. 1–20, doi:https://doi.org/10.1007/s00410-014-1015-5
    OpenUrlCrossRefGeoRef
  63. O'Hara, 1965.↵
    1. O'Hara M. J.
    , 1965, Primary magmas and the origin of basalts: Scottish Journal of Geology, v. 1, n. 1, p. 19–40, doi:https://doi.org/10.1144/sjg01010019
    OpenUrlAbstract/FREE Full Text
  64. Parman and Grove, 2004.↵
    1. Parman S. W.,
    2. Grove T. L.
    , 2004, Harzburgite melting with and without H2O: Experimental data and predictive modeling: Journal of Geophysical Research, v. 109, p. B02201, doi:https://doi.org/10.1029/2003JB002566
    OpenUrlCrossRef
  65. Ringuette and others 1999.↵
    1. Ringuette L.,
    2. Martignole J.,
    3. Windley B. F.
    , 1999, Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jilal sequence (Kohistan terrane, western Himalayas): Geology, v. 27, n. 2, p. 139–142, doi:https://doi.org/10.1130/0091-7613(1999)027<0139:MCICAD>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  66. Rioux and others 2007.↵
    1. Rioux M.,
    2. Hacker B.,
    3. Mattinson J.,
    4. Kelemen P.,
    5. Blusztajn J.,
    6. Gehrels G.
    , 2007, The magmatic development of an intra-oceanic arc: High-precision U-Pb zircon and whole-rock isotopic analyses from the accreted Talkeetna arc, south-central Alaska: Geological Society of America Bulletin, v. 119, n. 9–10, p. 1168–1184, doi:https://doi.org/10.1130/B25964.1
    OpenUrlAbstract/FREE Full Text
  67. Rioux and others 2010.↵
    1. Rioux M.,
    2. Mattinson J.,
    3. Hacker B.,
    4. Kelemen P.,
    5. Blusztajn J.,
    6. Hanghøj K.,
    7. Gehrels G.
    , 2010, Intermediate to felsic middle crust in the accreted Talkeetna arc, the Alaska Peninsula and Kodiak Island, Alaska: An analogue for low–velocity middle crust in modern arcs: Tectonics, v. 29, n. 3, p. TC3001, doi:https://doi.org/10.1029/2009TC002541
    OpenUrlCrossRef
  68. Rudnick and Fountain, 1995.↵
    1. Rudnick R. L.,
    2. Fountain D. M.
    , 1995, Nature and composition of the continental crust: A lower crustal perspective: Reviews of Geophysics, v. 33, n. 3, p. 267–309, doi:https://doi.org/10.1029/95RG01302
    OpenUrlCrossRefGeoRefWeb of Science
  69. Rudnick and Gao, 2003.↵
    1. Rudnick R. L.
    1. Rudnick R. L.,
    2. Gao S.
    , 2003, Composition of the continental crust, in Rudnick R. L., The Crust: Treatise on Geochemistry, v. 3, p. 1–64, doi:https://doi.org/10.1016/B0-08-043751-6/03016-4
    OpenUrlCrossRef
  70. Ruscitto and others 2010.↵
    1. Ruscitto D. M.,
    2. Wallace P. J.,
    3. Johnson E. R.,
    4. Kent A. J. R.,
    5. Bindeman I. N.
    , 2010, Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc: Earth and Planetary Science Letters, v. 298, n. 1–2, p. 153–161, doi:https://doi.org/10.1016/j.epsl.2010.07.037
    OpenUrlCrossRefGeoRefWeb of Science
  71. Sisson and Bronto, 1998.↵
    1. Sisson T. W.,
    2. Bronto S.
    , 1998, Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia: Nature, v. 391, p. 883–886, doi:https://doi.org/10.1038/36087
    OpenUrlCrossRefWeb of Science
  72. Sisson and others 2005.↵
    1. Sisson T. W.,
    2. Ratajeski K.,
    3. Hankins W. B.,
    4. Glazner A. F.
    , 2005, Voluminous granitic magmas from common basaltic sources: Contributions to Mineralogy and Petrology, v. 148, n. 6, p. 635–661, doi:https://doi.org/10.1007/s00410-004-0632-9
    OpenUrlCrossRefGeoRefWeb of Science
  73. Skjerlie and Patino Douce, 1995.
    1. Skjerlie K. P.,
    2. Patino Douce A. E.
    , 1995, Anatexis of interlayered amphibolite and pelite at 10 kbar: Effect of diffusion of major components on phase relations and melt fractions: Contributions to Mineralogy and Petrology, v. 122, n. 1–2, p. 62–78, doi:https://doi.org/10.1007/s004100050113
    OpenUrlCrossRefGeoRefWeb of Science
  74. Stamper and others 2014.↵
    1. Stamper C. C.,
    2. Blundy J. D.,
    3. Arculus R. J.,
    4. Melekhova E.
    , 2014, Petrology of plutonic xenoliths and volcanic rocks from Grenada, Lesser Antilles: Journal of Petrology, v. 55, n. 7, p. 1353–1387, doi:https://doi.org/10.1093/petrology/egu027
    OpenUrlCrossRefGeoRef
  75. Takahashi and others 2007.↵
    1. Takahashi Y.,
    2. Mikoshiba M. U.,
    3. Takahshi Y.,
    4. Kausar A. B.,
    5. Khan T.,
    6. Kubo K.
    , 2007, Geochemical modelling of the Chilas Complex in the Kohistan Terrane, northern Pakistan: Journal of Asian Earth Sciences, v. 29, n. 2–3, p. 336–349, doi:https://doi.org/10.1016/j.jseaes.2006.04.007
    OpenUrlCrossRefGeoRefWeb of Science
  76. Tamura and others 2002.↵
    1. Tamura Y.,
    2. Tatsumi Y.,
    3. Zhao D.,
    4. Kido Y.,
    5. Shukuno H.
    , 2002, Hot fingers in the mantle wedge: New insights into magma genesis in subduction zones: Earth and Planetary Science Letters, v. 197, n. 1–2, p. 105–116, doi:https://doi.org/10.1016/S0012-821X(02)00465-X
    OpenUrlCrossRefGeoRefWeb of Science
  77. Tamura and others 2016.↵
    1. Tamura Y.,
    2. Sato T.,
    3. Fujiwara T.,
    4. Kodaira S.,
    5. Nichols A.
    , 2016, Advent of Continents: A New Hypothesis: Scientific Reports, v. 6, doi:https://doi.org/10.1038/srep33517
    OpenUrlCrossRef
  78. Tatsumi, 1981.↵
    1. Tatsumi Y.
    , 1981, Melting experiments on a high-magnesian andesite: Earth and Planetary Science Letters, v. 54, n. 2, p. 357–365, doi:https://doi.org/10.1016/0012-821X(81)90017-0
    OpenUrlCrossRefGeoRefWeb of Science
  79. Tatsumi and others 2008.↵
    1. Tatsumi Y.,
    2. Takahashi T.,
    3. Hirahara Y.,
    4. Chang Q.,
    5. Miyazaki T.,
    6. Kimura J. I.,
    7. Ban M.,
    8. Sakayori A.
    , 2008, New Insights into Andesite Genesis: The Role of Mantle-derived Calc-alkalic and Crust-derived Tholeiitic Melts in Magma Differentiation beneath Zao Volcano, NE Japan: Journal of Petrology, v. 49, n. 11, p. 1971–2008, doi:https://doi.org/10.1093/petrology/egn055
    OpenUrlCrossRefGeoRefWeb of Science
  80. Taylor and McLennan, 1985.↵
    1. Taylor S. R.,
    2. McLennan S. M.
    , 1985, The continental crust: Its composition and evolution: Oxford, Blackwell, 312 p.
  81. Taylor and White, 1965.↵
    1. Taylor S. R.,
    2. White A. J. R.
    , 1965, Geochemistry of andesites and the growth of continents: Nature, v. 208, p. 271–273, doi:https://doi.org/10.1038/208271a0
    OpenUrlCrossRefGeoRef
  82. Turner and others 1992.↵
    1. Turner S. P.,
    2. Foden J. D.,
    3. Morrison R. S.
    , 1992, Derivation of some A-type magmas by fractionation of basaltic magma - an example from the Padthaway ridge, South Australia: Lithos, v. 28, n. 2, p. 151–179, doi:https://doi.org/10.1016/0024-4937(92)90029-X
    OpenUrlCrossRefGeoRefWeb of Science
  83. Ulmer, 1986.↵
    1. Ulmer P.
    , ms, 1986, Basische und ultrabasische Gesteine des Adamello (Provinzen Brescia und Trento, Norditalien): Zurich, Switzerland, ETH, Ph. D. thesis, 260 p.
  84. Ulmer, 1988.↵
    1. Ulmer P.
    1988, High Pressure Phase Equilibria of a calc-alkaline picro-basalt: Implications for the genesis of calc-alkaline magmas: Carnegie Institution of Washington Yearbook, v. 88, p. 28–35.
    OpenUrl
  85. Ulmer, 2001.↵
    1. Ulmer P.
    2001, Partial melting of the mantle wedge – the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas: Physics of the Earth and Planetary Interiors, p. 215–232, n. 1–4, doi:https://doi.org/10.1016/S0031-9201(01)00229-1
    OpenUrlCrossRef
  86. Ulmer and Luth, 1991.↵
    1. Ulmer P.,
    2. Luth R. W.
    , 1991, The graphite-COH fluid equilibrium in P, T, fO2 space: An experimental determination to 30 kbar and 1600 °C: Contributions to Mineralalogy and Petrology, v. 106, n. 3, p. 265–272, doi:https://doi.org/10.1007/BF00324556
    OpenUrlCrossRef
  87. Ulmer and others 2018.↵
    1. Ulmer P.,
    2. Kägi R.,
    3. Müntener O.
    , 2018, Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: An evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity: Journal of Petrology, doi:https://doi.org/10.1093/petrology/egy017
    OpenUrlCrossRef
  88. Villiger and others 2004.↵
    1. Villiger S.,
    2. Ulmer P.,
    3. Müntener O.,
    4. Thompson A. B.
    , 2004, The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equlibrium crystallization - an experimental study at 1.0 GPa: Journal of Petrology, v. 45, n. 12 p. 2369–2388, doi:https://doi.org/10.1093/petrology/egh042
    OpenUrlCrossRefGeoRefWeb of Science
  89. Villiger and others 2007.↵
    1. Villiger S.,
    2. Ulmer P.,
    3. Müntener O.
    , 2007, Equilibrium and fractional crystallization experiments at 0.7 GPa: The effect of pressure on phase relations and liquid compositions of tholeiitic magmas: Journal of Petrology, v. 48, n. 1, p. 159–184, doi:https://doi.org/10.1093/petrology/egl058
    OpenUrlCrossRefGeoRefWeb of Science
  90. Wallace, 2005.↵
    1. Wallace P. J.
    , 2005, Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data: Journal of Volcanology and Geothermal Research, v. 140, n. 1–3, p. 217–240, doi:https://doi.org/10.1016/j.jvolgeores.2004.07.023
    OpenUrlCrossRefGeoRefWeb of Science
  91. White and Chappell, 1983.↵
    1. White A. J. R.,
    2. Chappell B. W.
    , 1983, Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia: Geological Society of America Memoir, v. 159, p. 21–34, doi:https://doi.org/10.1130/MEM159-p21
    OpenUrlAbstract/FREE Full Text
  92. Wolf and Wyllie, 1994.↵
    1. Wolf M. B.,
    2. Wyllie P. J.
    , 1994, Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time: Contributions to Mineralogy and Petrology, v. 115, n. 4, p. 369–383, doi:https://doi.org/10.1007/BF00320972
    OpenUrlCrossRefGeoRefWeb of Science
  93. Wood and Turner, 2009.↵
    1. Wood B. J.,
    2. Turner S. P.
    , 2009, Origin of primitive high-Mg andesite: Constraints from natural examples and experiments: Earth and Planetary Science Letters, v. 283, n. 1–4, p. 59–66, doi:https://doi.org/10.1016/j.epsl.2009.03.032
    OpenUrlCrossRefGeoRefWeb of Science
  94. Yamamoto and Yoshino, 1998.↵
    1. Yamamoto H.,
    2. Yoshino T.
    , 1998, Superposition of replacements in the mafic granulites of the Jilal complex of the Kohistan arc, northern Pakistan: Dehydration and rehydration within deep arc crust: Lithos, v. 43, n. 4, p. 219–234, doi:https://doi.org/10.1016/S0024-4937(98)00014-0
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 318 (1)
American Journal of Science
Vol. 318, Issue 1
1 Jan 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Arc crust formation and differentiation constrained by experimental petrology
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 13 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Arc crust formation and differentiation constrained by experimental petrology
Othmar Müntener, Peter Ulmer
American Journal of Science Jan 2018, 318 (1) 64-89; DOI: 10.2475/01.2018.04

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Arc crust formation and differentiation constrained by experimental petrology
Othmar Müntener, Peter Ulmer
American Journal of Science Jan 2018, 318 (1) 64-89; DOI: 10.2475/01.2018.04
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • EXPERIMENTAL METHODS
    • LIQUID LINES OF DESCENT (LLD) AND CUMULATE LINES OF DESCENT (CLD)
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Timing and evolution of Middle Triassic magmatism in the Southern Alps (northern Italy)
  • The isotopic evolution of the Kohistan Ladakh arc from subduction initiation to continent arc collision
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • fractional crystallization
  • experimental petrology
  • arc lower crust
  • cumulate lines of descent
  • liquid lines of descent

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire