Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticles

Magmatic processes leading to compositional diversity in igneous rocks: Bowen (1928) revisited

Timothy L. Grove and Stephanie M. Brown
American Journal of Science January 2018, 318 (1) 1-28; DOI: https://doi.org/10.2475/01.2018.02
Timothy L. Grove
Department of Earth, Atmospheric and Planetary Sciences, 54-1220, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tlgrove@mit.edu
Stephanie M. Brown
Department of Earth, Atmospheric and Planetary Sciences, 54-1220, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. Andersen, 1915.↵
    1. Andersen O.
    , 1915, The system Anorthite – Forsterite – Silica: American Journal of Science, Fourth Series, v. 39, p. 407–454, doi:https://doi.org/10.2475/ajs.s4-39.232.407
    OpenUrlCrossRef
  2. Anderson, 1976.↵
    1. Anderson A. T.
    , 1976, Magma Mixing - Petrological Process and Volcanological Tool: Journal of Volcanology and Geothermal Research, v. 1, n. 1, p. 3–33, doi:https://doi.org/10.1016/0377-0273(76)90016-0
    OpenUrlCrossRefGeoRefWeb of Science
  3. Baker and others 1991.↵
    1. Baker M. B.,
    2. Grove T. L.,
    3. Kinzler R. J.,
    4. Donnelly-Nolan J. M.,
    5. Wandless G. A.
    , 1991, Origin of Compositional Zonation (High-Alumina Basalt to Basaltic Andesite) in the Giant Crater Lava-Field, Medicine Lake Volcano, Northern California: Journal of Geophysical Research-Solid Earth, v. 96, n. B13, p. 21819–21842, doi:https://doi.org/10.1029/91JB01945
    OpenUrlCrossRef
  4. Bogaerts and Schmidt, 2006.↵
    1. Bogaerts M.,
    2. Schmidt M. W.
    , 2006, Experiments on silicate melt immiscibility in the system Fe2SiO4-KAlSi3O8-SiO2-CaO-MgO-TiO2-P2O5 and implications for natural magmas: Contributions to Mineralogy and Petrology, v. 152, n. 3, p. 257–274, doi:https://doi.org/10.1007/s00410-006-0111-6
    OpenUrlCrossRefGeoRefWeb of Science
  5. Bowen, 1912.↵
    1. Bowen N. L.
    , 1912, The binary system Na2Al2Si2O8 (Nephelite, carnegieite) - CaAl2Si2O8 (Anorthite): American Journal of Science, Fourth Series, v. 33, p. 551–573, doi:https://doi.org/10.2475/ajs.s4-33.198.551
    OpenUrlCrossRef
  6. Bowen, 1913.↵
    1. Bowen N. L.
    1913, The melting phenomena of the plagioclase fieldspars: American Journal of Science, Fourth Series, v. 35, p. 577–599, doi:https://doi.org/10.2475/ajs.s4-35.210.577
    OpenUrlCrossRef
  7. Bowen, 1914.↵
    1. Bowen N. L.
    1914, The ternary system: Diopside - Forsterite - Silica: American Journal of Science, Fourth Series, v. 38, p. 207–264, doi:https://doi.org/10.2475/ajs.s4-38.225.207
    OpenUrlCrossRef
  8. Bowen, 1916.↵
    1. Bowen N. L.
    1916, Das ternäre system: Diopsid – Anorthit – Albit: Zeitschrift für Anorganische und Allgemeine Chemie, v. 94, n. 1, 23–50, doi:https://doi.org/10.1002/zaac.19160940103
    OpenUrlCrossRef
  9. Bowen, 1928.↵
    1. Bowen N. L.
    1928, The Evolution of the Igneous Rocks: Princeton, New Jersey, Princeton University Press, 332 p.
  10. Bowen and Andersen, 1914.↵
    1. Bowen N. L.,
    2. Andersen O.
    , 1914, The binary system MgO-SiO2: American Journal of Science, Fourth Series, v. 37, p. 487–500, doi:https://doi.org/10.2475/ajs.s4-37.222.487
    OpenUrlCrossRef
  11. Boyd and England, 1960.↵
    1. Boyd F. R.,
    2. England J. L.
    , 1960, Apparatus for phase equilibrium studies at pressures up to 50 kilobars and temperatures up to 1750 °C: Journal of Geophysical Research, v. 65, n. 2, p. 741–748, doi:https://doi.org/10.1029/JZ065i002p00741
    OpenUrlCrossRefGeoRefWeb of Science
  12. Bridgman, 1952.↵
    1. Bridgman P. W.
    , 1952, The resistance of 72 elements, alloys and compounds to 100,000 kg/cm2: Proceedings of the American Academy of Arts and Sciences, v. 81, n. 4, p. 167–1251, doi:https://doi.org/10.2307/20023677
    OpenUrlCrossRef
  13. Burnham and Jahns, 1962.↵
    1. Burnham C. W.,
    2. Jahns R. H.
    , 1962, A method for determining solubility of water in silicate melts: American Journal of Science, v. 260, n. 10, p. 721–745, doi:https://doi.org/10.2475/ajs.260.10.721
    OpenUrlAbstract/FREE Full Text
  14. Byerly, 1980.↵
    1. Byerly G.
    , 1980, The nature of differentiation trends in some volcanic-rocks from the Galapagos spreading center: Journal of Geophysical Research-Solid Earth, v. 85, n. B7, p. 3797–3810, doi:https://doi.org/10.1029/JB085iB07p03797
    OpenUrlCrossRef
  15. Campbell and Turner, 1987.↵
    1. Campbell I. H.,
    2. Turner J. S.
    , 1987, A laboratory investigation of assimilation at the top of a basaltic magma chamber: Journal of Geology, v. 95, n. 2, p. 155–172, doi:https://doi.org/10.1086/629117
    OpenUrlCrossRefGeoRefWeb of Science
  16. Carmichael, 1964.↵
    1. Carmichael I. S. E.
    , 1964, The petrology of Thingmuli, a tertiary volcano in eastern Iceland: Journal of Petrology, v. 5, n. 3, p. 435–460, doi:https://doi.org/10.1093/petrology/5.3.435
    OpenUrlCrossRefGeoRefWeb of Science
  17. Carmichael, 2002.↵
    1. Carmichael I. S. E.
    2002, The andesite aqueduct: Perspectives on the evolution of intermediate magmatism in west-central (105 – 99 °W) Mexico: Contributions to Mineralogy and Petrology, v. 143, n. 6, p. 641–663, doi:https://doi.org/10.1007/s00410-002-0370-9
    OpenUrlCrossRefGeoRefWeb of Science
  18. Charlier and Grove, 2012.↵
    1. Charlier B.,
    2. Grove T. L.
    , 2012, Experiments on liquid immiscibility along tholeiitic liquid lines of descent: Contributions to Mineralogy and Petrology, v. 164, n. 1, p. 27–44, doi:https://doi.org/10.1007/s00410-012-0723-y
    OpenUrlCrossRefGeoRefWeb of Science
  19. Charlier and others 2013.↵
    1. Charlier B.,
    2. Namur O.,
    3. Grove T. L.
    , 2013, Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series: Geochimica et Cosmochimica Acta, v. 113, p. 79–93, doi:https://doi.org/10.1016/j.gca.2013.03.017
    OpenUrlCrossRefGeoRefWeb of Science
  20. Clarke and Washington, 1922.↵
    1. Clarke F. W.,
    2. Washington H. S.
    , 1922, The average chemical composition of igneous rocks: Proceedings of the National Academy of Sciences of the United States of America, v. 8, p. 108–115, doi:https://doi.org/10.1073/pnas.8.5.108
    OpenUrlFREE Full Text
  21. Daly, 1914.↵
    1. Daly R. A.
    , 1914, Igneous rocks and their origin: New York, New York, McGraw-Hill Book Company, Inc., 563 p.
  22. Daly, 1952.↵
    1. Daly R. A.
    1952, The Name “Tholeiite”: Geological Magazine, v. 89, p. 69–70, doi:https://doi.org/10.1017/S0016756800067339
    OpenUrlAbstract
  23. Darwin, 1844.
    1. Darwin C.
    , 1844, Geological Observations on the Volcanic Islands, Visited During the Voyage of HMS Beagle, Together with Some Brief Notices on the Geology of Australia and the Cape of Good Hope Being the Second Part of the Geology of the Beagle, Under the Command of Capt. Fitzroy, RN During the Years 1832 to 1836: London, England, Smith, Elder and Company, 192 p.
  24. Day and Allen, 1904.↵
    1. Day A. L.,
    2. Allen E. T.
    , 1904, Temperature measurements to 1600 °C: Physical Review, Series 1, v. 19, p. 177–185, doi:https://doi.org/10.1103/PhysRevSeriesI.19.177
    OpenUrlCrossRef
  25. De, 1974.↵
    1. De A.
    , 1974, Silicate liquid immiscibility in deccan-traps and its petrogenetic significance: Geological Society of America Bulletin, v. 85, n. 3, p. 471–474, doi:https://doi.org/10.1130/0016-7606(1974)85<471:SLIITD>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  26. Delano and Hanson, 1996.↵
    1. Delano J. W.,
    2. Hanson B.
    , 1996, Liquid Immiscibility: Cause of Compositional Heterogeneity in Tektites: Lunar and Planetary Science, v. 27, p. 305–306.
    OpenUrl
  27. DePaolo, 1981.↵
    1. DePaolo D. J.
    , 1981, Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization: Earth and Planetary Science Letters, v. 53, n. 2, p. 189–202, doi:https://doi.org/10.1016/0012-821X(81)90153-9
    OpenUrlCrossRefGeoRefWeb of Science
  28. Dixon and Rutherford, 1979.↵
    1. Dixon S.,
    2. Rutherford M. J.
    , 1979, Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: An experimental-study: Earth and Planetary Science Letters, v. 45, n. 1, p. 45–60, doi:https://doi.org/10.1016/0012-821X(79)90106-7
    OpenUrlCrossRefGeoRefWeb of Science
  29. Donnelly-Nolan and others 1990.↵
    1. Donnelly-Nolan J. M.,
    2. Champion D. E.,
    3. Miller C. D.,
    4. Grove T. L.,
    5. Trimble D. A.
    , 1990, Post-11,000-year volcanism at Medicine Lake Volcano, Northern California cascade range: Journal of Geophysical Research-Solid Earth, v. 95, n. B12, p. 19693–19704, doi:https://doi.org/10.1029/JB095iB12p19693
    OpenUrlCrossRef
  30. Donnelly-Nolan and others 2016.↵
    1. Donnelly-Nolan J. M.,
    2. Champion D. E.,
    3. Grove T. L.
    , 2016, Late Holocene Volcanism at Medicine Lake Volcano, Northern California Cascades: United States Geological Survey Professional Paper 1822, 59 p., doi:https://doi.org/10.3133/pp1822
    OpenUrlCrossRef
  31. Dungan and Rhodes, 1978.↵
    1. Dungan M. A.,
    2. Rhodes J. M.
    , 1978, Residual glasses and melt inclusions in basalts from DSDP legs 45 and 46: Evidence for magma mixing: Contributions to Mineralogy and Petrology, v. 67, n. 4, p. 417–431, doi:https://doi.org/10.1007/BF00383301
    OpenUrlCrossRefGeoRefWeb of Science
  32. Engel and others 1965.↵
    1. Engel A. E. J.,
    2. Engel C. G.,
    3. Havens R. G.
    , 1965, Chemical charcteristics of the oceanic mantle and the upper mantle: Geological Society of America Bulletin, v. 76, n. 7, p. 719–734, doi:https://doi.org/10.1130/0016-7606(1965)76[719:CCOOBA]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  33. Fenner, 1926.↵
    1. Fenner C. N.
    , 1926, The Katmai magmatic province: The Journal of Geology, v. 34, n. 7, Part 2, p. 673–772, doi:https://doi.org/10.1086/623350
    OpenUrlCrossRefWeb of Science
  34. Fenner, 1929.
    1. Fenner C. N.
    1929, The crystallization of basalts: American Journal of Science, Series 5, v. 18, n. 105, p. 225–253, doi:https://doi.org/10.2475/ajs.s5-18.105.225
    OpenUrlCrossRef
  35. Fenner, 1937.↵
    1. Fenner C. N.
    1937, A view of magmatic differentiation: The Journal of Geology, v. 45, n. 2, p. 158–168, doi:https://doi.org/10.1086/624515
    OpenUrlCrossRefGeoRefWeb of Science
  36. Fenner, 1948.↵
    1. Fenner C. N.
    1948, Immiscibility of Igneous Magmas: American Journal of Science, v. 246, n. 8, p. 465–502, doi:https://doi.org/10.2475/ajs.246.8.465
    OpenUrlAbstract/FREE Full Text
  37. Finch and Anderson, 1930.↵
    1. Finch R. H.,
    2. Anderson C. A.
    , 1930, The quartz basalt eruptions of Cinder Cone, Lassen Volcanic National Park, California: University of California Publications Bulletin of the Department of Geological Sciences, v. 19, p. 245–273.
    OpenUrlGeoRef
  38. Fornari and others 1983.↵
    1. Fornari D. J.,
    2. Perfit M. R.,
    3. Malahoff A.,
    4. Embley R.
    , 1983, Geochemical Studies of Abyssal Lavas Recovered by DSRV Alvin from eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 1. Major Element Variations in Natural Glasses and Spacial Distribution of Lavas: Journal of Geophysical Research-Solid Earth, v. 88, n. B12, p. 10519–10529, doi:https://doi.org/10.1029/JB088iB12p10519
    OpenUrlCrossRef
  39. Gaetani and Grove, 1998.↵
    1. Gaetani G. A.,
    2. Grove T. L.
    , 1998, The influence of water on melting of mantle peridotite: Contributions to Mineralogy and Petrology, v. 131, n. 4, p. 323–346, doi:https://doi.org/10.1007/s004100050396
    OpenUrlCrossRefGeoRefWeb of Science
  40. Gale and others 2013.↵
    1. Gale A.,
    2. Dalton C. A.,
    3. Langmuir C. H.,
    4. Su Y.,
    5. Schilling J.-G.
    , 2013, The mean composition of ocean ridge basalts: Geochemistry, Geophysics, Geosystems, v. 14, n. 3, p. 489–515, doi:https://doi.org/10.1029/2012GC004334
    OpenUrlCrossRefGeoRefWeb of Science
  41. Green and Ringwood, 1967.↵
    1. Green D. H.,
    2. Ringwood A. E.
    , 1967, The genesis of basaltic magmas: Contributions to Mineralogy and Petrology, v. 15, n. 2, p. 103–190, doi:https://doi.org/10.1007/BF00372052
    OpenUrlCrossRefGeoRef
  42. Greig, 1927a.↵
    1. Greig J. W.
    , 1927a, Immiscibility in silicate melts: American Journal of Science, Fifth Series, v. 13, n. 73, p. 1–44, doi:https://doi.org/10.2475/ajs.s5-13.73.1
    OpenUrlCrossRef
  43. Greig, 1927b.↵
    1. Greig J. W.
    1927b, Immiscibility in silicate melts: American Journal of Science, Fifth Series, v. 13, n. 74, p. 133–154, doi:https://doi.org10.2475/ajs.s5-13.74.133
    OpenUrlCrossRef
  44. Grove, 1981.↵
    1. Grove T. L.
    , 1981, Use of FePt alloys to Eliminate the Iron Loss Problem in 1-Atmosphere Gas Mixing Experiments: Theoretical and Practical Considerations: Contributions to Mineralogy and Petrology, v. 78, n. 3, p. 298–304, doi:https://doi.org/10.1007/BF00398924
    OpenUrlCrossRefGeoRefWeb of Science
  45. Grove and Baker, 1984.↵
    1. Grove T. L.,
    2. Baker M. B.
    , 1984, Phase equilibrium controls on the calc-alkaline vs. tholeiitic differentiation trends: Journal of Geophysical Research-Solid Earth and Planets, v. 89, p. 3253–3274.
    OpenUrl
  46. Grove and Bryan, 1983.↵
    1. Grove T. L.,
    2. Bryan W. B.
    , 1983, Fractionation of pyroxene-phyric MORB at low pressure: An experimental study: Contributions to Mineralogy and Petrology, v. 84, n. 4, p. 293–309, doi:https://doi.org/10.1007/BF01160283
    OpenUrlCrossRefGeoRefWeb of Science
  47. Grove and others 1982.↵
    1. Grove T. L.,
    2. Gerlach D. C.,
    3. Sando T. W.
    , 1982, Origin of Calc-Alkaline Series Lavas at Medicine Lake Volcano by Fractionation, Assimilation and Mixing: Contributions to Mineralogy and Petrology, v. 80, n. 2, p. 160–182, doi:https://doi.org/10.1007/BF00374893
    OpenUrlCrossRefGeoRefWeb of Science
  48. Grove and others 1988.↵
    1. Grove T. L.,
    2. Kinzler R. J.,
    3. Baker M. B.,
    4. Donnelly-Nolan J. M.,
    5. Lesher C. E.
    , 1988, Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake volcano, northern California: Decoupling of heat and mass transfer: Contributions to Mineralogy and Petrology, v. 99, n. 3, p. 320–343, doi:https://doi.org/10.1007/BF00375365
    OpenUrlCrossRefGeoRefWeb of Science
  49. Grove and others 2003.
    1. Grove T. L.,
    2. Elkins-Tanton L. T.,
    3. Parman S. W.,
    4. Chatterjee N.,
    5. Muentener O.,
    6. Gaetani G. A.
    , 2003, Fractional crystallization and mantle melting controls on calc-alkaline differentiation trends: Contributions to Mineralogy and Petrology, v. 145, n. 5, p. 515–533, doi:https://doi.org/10.1007/s00410-003-0448-z
    OpenUrlCrossRefGeoRefWeb of Science
  50. Grove and others 2012.↵
    1. Grove T. L.,
    2. Till C. B.,
    3. Krawczynski M. J.
    , 2012, The Role of H2O in Subduction Zone Magmatism: Annual Review of Earth and Planetary Sciences, n. 40, p. 413–439, doi:https://doi.org/10.1146/annurev-earth-042711-105310
    OpenUrlCrossRef
  51. Hamilton and others 1964.↵
    1. Hamilton D. L.,
    2. Burnham C. W.,
    3. Osborn E. F.
    , 1964, The Solubility of Water and Effects of Oxygen Fugacity and Water Content on Crystallization in Mafic Magmas: Journal of Petrology, v. 5, n. 2, p. 21–39, doi:https://doi.org/10.1093/petrology/5.1.21
    OpenUrlCrossRefGeoRefWeb of Science
  52. Hildreth, 1979.↵
    1. Hildreth W.
    , 1979, The Bishop Tuff: Evidence for the origin of compositional zonation in silicic magma chambers: Geological Society of America Special Paper 180, p. 43–75, doi:https://doi.org/10.1130/SPE180-p43
    OpenUrlCrossRef
  53. Hildreth and Wilson, 2007.↵
    1. Hildreth W.,
    2. Wilson C. H.
    , 2007, Compositional Zonation of the Bishop Tuff: Journal of Petrology, v. 48, n. 5, p. 951–999, doi:https://doi.org/10.1093/petrology/egm007
    OpenUrlCrossRefGeoRefWeb of Science
  54. Holloway and Burnham, 1972.↵
    1. Holloway J. R.,
    2. Burnham C. W.
    , 1972, Melting Relations of Basalt with Equilibrium Water Pressure Less than Total Pressure: Journal of Petrology, v. 13, n. 1, p. 1–29, doi:https://doi.org/10.1093/petrology/13.1.1
    OpenUrlCrossRefGeoRefWeb of Science
  55. Huebner, 1971.↵
    1. Ulmer G. C.
    1. Huebner J. S.
    , 1971, Buffering techniques for hydrostatic systems at elevated pressure, in Ulmer G. C., editor, Research Techniques for High Pressure and High Temperature: New York, Springer Verlag, p. 123–177, doi:https://doi.org/10.1007/978-3-642-88097-1_5
    OpenUrlCrossRef
  56. Hunter and Sparks, 1987.↵
    1. Hunter R. H.,
    2. Sparks R. S. J.
    , 1987, The Differentiation of the Skaergaard Intrusion: Contributions to Mineralogy and Petrology, v. 95, n. 4, p. 451–461, doi:https://doi.org/10.1007/BF00402205
    OpenUrlCrossRefGeoRefWeb of Science
  57. Huppert and Sparks, 1980.↵
    1. Huppert H. E.,
    2. Sparks R. S. J.
    , 1980, The Fluid-Dynamics of a Basaltic Magma Chamber Replenished by Influx of Hot, Dense Ultrabasic Magma: Contributions to Mineralogy and Petrology, v. 75, n. 3, p. 279–289, doi:https://doi.org/10.1007/BF01166768
    OpenUrlCrossRefWeb of Science
  58. Huppert and Sparks, 1988.↵
    1. Huppert H. E.,
    2. Sparks R. S. J.
    1988, The Generation of Granitic Magmas by Intrusion of Basalt into Continental-Crust: Journal of Petrology, v. 29, n. 3, p. 599–624, doi:https://doi.org/10.1093/petrology/29.3.599
    OpenUrlCrossRefGeoRefWeb of Science
  59. Jagoutz and Klein, 2018.
    1. Jagoutz O.,
    2. Klein B.
    , 2018, On the importance of crystallization-differentiation for the generation of SiO2-rich melts and the compositional build up of arc (and continental) crust: American Journal of Science, v. 318, n. 1, doi:https://doi.ord/10.2475/01.2018.03
    OpenUrlCrossRef
  60. Jakobsen and others 2005.↵
    1. Jakobsen J. K.,
    2. Veksler I. V.,
    3. Tegner C.,
    4. Brooks C. K.
    , 2005, Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion: Geology, v. 33, n. 11, p. 885–888, doi:https://doi.org/10.1130/G21724.1
    OpenUrlAbstract/FREE Full Text
  61. Jakobsen and others 2011.↵
    1. Jakobsen J. K.,
    2. Veksler I. V.,
    3. Tegner C.,
    4. Brooks C. K.
    2011, Crystallization of the Skaergaard Intrusion from an Emulsion of Immiscible Iron- and Silica-rich Liquids: Evidence from Melt Inclusions in Plagioclase: Journal of Petrology, v. 52, n. 2, p. 345–373, doi:https://doi.org/10.1093/petrology/egq083
    OpenUrlCrossRefGeoRefWeb of Science
  62. Juster and others 1989.↵
    1. Juster T. C.,
    2. Grove T. L.,
    3. Perfit M. R.
    , 1989, Experimental constraints on the generation of Fe-Ti basalts, andesites, and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W: Journal of Geophysical Research-Solid Earth, v. 94, n. B7, p. 9251–9274, doi:https://doi.org/10.1029/JB094iB07p09251
    OpenUrlCrossRef
  63. Kawai and Endo, 1970.↵
    1. Kawai N.,
    2. Endo S.
    , 1970, The generation of ultrahigh hydrostatic pressures by a split sphere apparatus: Review of Scientific Instrumentation, v. 41, p. 1178–1181, doi:https://doi.org/10.1063/1.1684753
    OpenUrlCrossRef
  64. Kennedy, 1955.↵
    1. Kennedy G. C.
    , 1955, Some Aspects of the Role of Water in Rock Melts: Geological Society of America Special Paper 62, p. 489–504, doi:https://dx.doi.org/10.1130/SPE62-p489
    OpenUrlCrossRef
  65. Kerr and others 1999.↵
    1. Kerr A. C.,
    2. Iturralde-Vinent M. A.,
    3. Saunders A. D.,
    4. Babbs T. L.,
    5. Tarney J.
    , 1999, A new Plate Tectonic Model of the Caribbean: Implications from a Geochemical reconnaissance of Cuban Mesozoic volcanic rocks: Geological Society of America Bulletin, v. 111, n. 11, p. 1581–1599, doi:https://doi.org/10.1130/0016-7606(1999)111<1581:ANPTMO>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  66. Kinzler and Grove, 1992.↵
    1. Kinzler R. J.,
    2. Grove T. L.
    , 1992, Primary magmas of mid-ocean ridge basalts 1. Experiments and Methods, 2. Applications: Journal of Geophysical Research-Solid Earth, v. 97, n. B5, p. 6885–6926, doi:https://doi.org/10.1029/91JB02840
    OpenUrlCrossRef
  67. Kinzler and others 2000.↵
    1. Kinzler R. J.,
    2. Donnelly-Nolan J. D.,
    3. Grove T. L.
    , 2000, Late Holocene hydrous mafic magmatism at the Paint Pot Crater and Callahan flows, Medicine Lake Volcano, N. California and the influence of H2O in the generation of silicic magmas: Contributions to Mineralogy and Petrology, v. 138, n. 1, p. 1–16, doi:https://doi.org/10.1007/PL00007657
    OpenUrlCrossRefGeoRefWeb of Science
  68. Klein and Langmuir, 1987.↵
    1. Klein E. M.,
    2. Langmuir C. H.
    , 1987, Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness: Journal of Geophysical Research-Solid Earth, v. 92, n. B2, p. 8089–81115, doi:https://doi.org/10.1029/JB092iB08p08089
    OpenUrlCrossRef
  69. Krawczynski and others 2012.↵
    1. Krawczynski M. J.,
    2. Grove T. L.,
    3. Behrens H.
    , 2012, Amphibole stability in primitive arc magmas: Effects of temperature, H2O content, and oxygen fugacity: Contributions to Mineralogy and Petrology, v. 164, n. 2, p. 317–339, doi:https://doi.org/10.1007/s00410-012-0740-x
    OpenUrlCrossRefGeoRefWeb of Science
  70. Kuno, 1936.↵
    1. Kuno H.
    , 1936, Chemical compositions of volcanic rocks from Izu and Hakone volcano: Volcanological Society of Japan Bulletin, v. 3, p. 53–71.
    OpenUrl
  71. Kuno, 1965.↵
    1. Kuno H.
    1965, Fractionation Trends of Basalt Magmas in Lava Flows: Journal of Petrology, v. 6, n. 2, p. 302–321, doi:https://doi.org/10.1093/petrology/6.2.302
    OpenUrlCrossRefGeoRefWeb of Science
  72. Kushiro, 1972.↵
    1. Kushiro I.
    , 1972, Determination of the liquidus relations in synthetic silicate systems with electron probe analysis: The system forsterite-diopside-silica at 1 atmosphere: American Mineralogist, v. 57, p. 1260–1271.
    OpenUrlGeoRefWeb of Science
  73. Larsen and others 1938a.↵
    1. Larsen E. S.,
    2. Irving J.,
    3. Gonyer F. A.,
    4. Larsen E. S. III.
    , 1938a, Petrologic results of a study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado: American Mineralogist, v. 23, n. 7, p. 417–429.
    OpenUrlWeb of Science
  74. Larsen and others 1938b.↵
    1. Larsen E. S.,
    2. Irving J.,
    3. Gonyer F. A.,
    4. Larsen E. S. III.
    1938b, Petrologic results of a study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado: American Mineralogist, v. 23, n. 4, p. 227–257.
    OpenUrlGeoRefWeb of Science
  75. Lesher, 1986.↵
    1. Lesher C. E.
    , 1986, Effects of Silicate Liquid Composition on Mineral-Liquid Element Partitioning from Soret Diffusion Studies: Journal of Geophysical Research-Solid Earth, v. 91, n. B6, p. 6123–6141, doi:https://doi.org/10.1029/JB091iB06p06123
    OpenUrlCrossRef
  76. Lesher and Walker, 1991.↵
    1. Ganguly J.
    1. Lesher C. E.,
    2. Walker D.
    , 1991, Thermal Diffusion in Petrology, in Ganguly J., editor, Diffusion, Atomic Ordering and Mass Transport: Advances in Physical Geochemistry, v. 8, p. 397–451, doi:https://doi.org/10.1007/978-1-4613-9019-0_12
    OpenUrlCrossRef
  77. Liu, 1974.↵
    1. Liu L.
    , 1974, Silicate perovskite from phase transitions of pyrope-garnet at high pressure and temperature: Geophysical Research Letters, v. 1, n. 6, p. 277–280, doi:https://doi.org/10.1029/GL001i006p00277
    OpenUrlCrossRefGeoRef
  78. Liu, 1975.↵
    1. Liu L.
    1975, Post-oxide phases of olivine and pyroxene and mineralogy of the mantle: Nature, v. 258, p. 510–512, doi:https://doi.org/10.1038/258510a0
    OpenUrlCrossRefGeoRef
  79. McBirney, 1975.↵
    1. McBirney A. R.
    , 1975, Differentiation of Skaergaard Intrusion: Nature, v. 253, p. 691–694, doi:https://doi.org/10.1038/253691a0
    OpenUrlCrossRefGeoRef
  80. McBirney and Naslund, 1990.↵
    1. McBirney A. R.,
    2. Naslund H. R.
    , 1990, The Differentiation of the Skaergaard Intrusion - A Discussion: Contributions to Mineralogy and Petrology, v. 104, n. 2, p. 235–240, doi:https://doi.org/10.1007/BF00306446
    OpenUrlCrossRefGeoRefWeb of Science
  81. McBirney and Williams, 1969.↵
    1. McBirney A. R.,
    2. Williams H.
    , 1969, Geology and petrology of the Galapagos Islands: Geological Soiety of America Memoirs, v. 118, p. 1–197, doi:https://doi.org/10.1130/MEM118-p1
    OpenUrlCrossRef
  82. McBirney and others 1985.↵
    1. McBirney A. R.,
    2. Baker B. H.,
    3. Nilson R. H.
    , 1985, Liquid Fractionation. Part 1: Basic Principles and Experimental Simulations: Journal of Volcanology and Geothermal Research, v. 24, n. 1–2, p. 1–24, doi:https://doi.org/10.1016/0377-0273(85)90026-5
    OpenUrlCrossRefGeoRefWeb of Science
  83. Médard and Grove, 2008.
    1. Médard E.,
    2. Grove T. L.
    , 2008, The effect to H2O on the olivine liquidus of basaltic melts: Experiments and thermodynamic models: Contributions to Mineralogy and Petrology, v. 155, n. 4, p. 417–432, doi:https://doi.org/10.1007/s00410-007-0250-4
    OpenUrlCrossRefGeoRefWeb of Science
  84. Merrill and Bassett, 1974.↵
    1. Merrill L.,
    2. Bassett W. A.
    , 1974, Minature diamond anvil pressure cell for single crystal x-ray diffraction studies: Reviews of Scientific Instruments, v. 45, p. 290–294, doi:https://doi.org/10.1063/1.1686607
    OpenUrlCrossRef
  85. Muir and others 1964.↵
    1. Muir I. D.,
    2. Tilley C. E.,
    3. Scoon J. H.
    , 1964, Basalts from the northern part of the rift zone of the mid-Atlantic Ridge: Journal of Petrology, v. 5, n. 3, p. 403–434, doi:https://doi.org/10.1093/petrology/5.3.409
    OpenUrlCrossRef
  86. Murakami and others 2004.↵
    1. Murakami M.,
    2. Hirose K.,
    3. Kawamura K.,
    4. Sata N.,
    5. Ohishi Y.
    , 2004, Post-perovskite phase transition in MgSiO3: Science, v. 304, n. 5672, p. 855–858, doi:https://doi.org/10.1126/science.1095932
    OpenUrlAbstract/FREE Full Text
  87. Nafziger and others 1971.↵
    1. Ulmer G. C.
    1. Nafziger R. H.,
    2. Ulmer G. C.,
    3. Woerman E.
    , 1971, Gaseous buffering for the control of oxygen fugacity at one atmosphere, in Ulmer G. C., editor, Research Techniques for High Pressure and High Temperature: New York, Springer Verlag, p. 9–43.
  88. Namur and others 2010.↵
    1. Namur O.,
    2. Charlier B.,
    3. Toplis M. J.,
    4. Higgins M. D.,
    5. Liégeois J. P.,
    6. Vander Auwera J.
    , 2010, Crystallization Sequence and Magma Chamber Processes in the Ferrobasaltic Sept Iles Layered Intrusion, Canada: Journal of Petrology, v. 51, n. 6, p. 1203–1236, doi:https://doi.org/10.1093/petrology/egq016
    OpenUrlCrossRefGeoRefWeb of Science
  89. Namur and others 2012.↵
    1. Namur O.,
    2. Charlier B.,
    3. Holness M. B.
    , 2012, Dual origin of Fe-Ti-P gabbros by immiscibility and fractional crystallization of evolved tholeiitic basalts in the Sept Iles layered intrusion: Lithos, v. 154, p. 100–114, doi:https://doi.org/10.1016/j.lithos.2012.06.034
    OpenUrlCrossRefGeoRefWeb of Science
  90. Naslund, 1983.↵
    1. Naslund H. R.
    , 1983, The Effect of Oxygen Fugacity on Liquid Immiscibility in Iron-Bearing Silicate Melts: American Journal of Science, v. 283, n. 10, p. 1034–1059, doi:https://doi.org/10.2475/ajs.283.10.1034
    OpenUrlAbstract/FREE Full Text
  91. Oganov and Ono, 2004.↵
    1. Oganov A. R.,
    2. Ono S.
    , 2004, Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in the Earth's D” layer: Nature, v. 430, p. 445–448, doi:https://doi.org/10.1038/nature02701
    OpenUrlCrossRefPubMedWeb of Science
  92. O'Neill, 1981.↵
    1. O'Neill H. St. C.
    , 1981, The transition between spinel lherzolite and garnet lherzolite and its use as a geobarometer: Contributions to Mineralogy and Petrology, v. 77, n. 2, p. 185–194, doi:https://doi.org/10.1007/BF00636522
    OpenUrlCrossRefGeoRefWeb of Science
  93. Osborn, 1959.↵
    1. Osborn E. F.
    , 1959, Role of Oxygen Pressure in the Crystallization and Differentiation of Basaltic Magma: American Journal of Science, v. 257, n. 9, p. 609–647, doi:https://doi.org/10.2475/ajs.257.9.609
    OpenUrlAbstract/FREE Full Text
  94. Pasek and others 2012.↵
    1. Pasek M. A.,
    2. Block K.,
    3. Pasek V.
    , 2012, Fulgurite morphology: A classification scheme and clues to formation: Contributions to Mineralogy and Petrology, v. 164, n. 3, p. 477–492, doi:https://doi.org/10.1007/s00410-012-0753-5
    OpenUrlCrossRefGeoRefWeb of Science
  95. Perfit and Fornari, 1983.↵
    1. Perfit M. R.,
    2. Fornari D. J.
    , 1983, Geochemical Studies of Abyssal Lavas Recovered by DSRV Alvin from eastern Galapagos Rift, Inca Transform, and Ecuador Rift .2. Phase Chemistry and Crystallization History: Journal of Geophysical Research-Solid Earth, v. 88, n. B12, p. 10,530–10,550, doi:https://doi.org/10.1029/JB088iB12p10530
    OpenUrlCrossRef
  96. Philpotts, 1979.↵
    1. Philpotts A. R.
    , 1979, Silicate Liquid Immiscibility in Tholeiitic Basalts: Journal of Petrology, v. 20, n. 1, p. 99–118, doi:https://doi.org/10.1093/petrology/20.1.99
    OpenUrlCrossRefGeoRefWeb of Science
  97. Philpotts, 1982.↵
    1. Philpotts A. R.
    1982, Compositions of immiscible liquids in volcanic rocks: Contributions to Mineralogy and Petrology, v. 80, n. 3, p. 201–218, doi:https://doi.org/10.1007/BF00371350
    OpenUrlCrossRefGeoRefWeb of Science
  98. Presnall, 1966.↵
    1. Presnall D. C.
    , 1966, The Join Forsterite-Diopside-Iron Oxide and Its Bearing On Crystallization of Basaltic and Ultramafic Magmas: American Journal of Science, v. 264, n. 10, p. 753–809, doi:https://doi.org/10.2475/ajs.264.10.753
    OpenUrlAbstract
  99. Ridolfi and others 2010.↵
    1. Ridolfi F.,
    2. Renzulli A.,
    3. Puerini M.
    , 2010, Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes: Contributions to Mineralogy and Petrology, v. 160, n. 1, p. 45–66, doi:https://doi.org/10.1007/s00410-009-0465-7
    OpenUrlCrossRefGeoRefWeb of Science
  100. Ringwood, 1962.↵
    1. Ringwood A. E.
    , 1962, Mineralogical constitution of the deep mantle: Journal of Geophysical Research-Solid Earth, v. 62, n. 10, p. 4005–4010, doi:https://doi.org/10.1029/JZ067i010p04005
    OpenUrlCrossRef
  101. Ringwood and Major, 1970.↵
    1. Ringwood A. E.,
    2. Major A.
    , 1970, The system Mg2SiO4 – Fe2SiO4 at high pressures and temperatures: Physics of the Earth and Planetary Interiors, v. 3, p. 89–108, doi:https://doi.org/10.1016/0031-9201(70)90046-4
    OpenUrlCrossRefGeoRef
  102. Ripley and others 1998.↵
    1. Ripley E. M.,
    2. Severson M. J.,
    3. Hauck S. A.
    , 1998, Evidence for sulfide and Fe-Ti-P-rich liquid immiscibility in the Duluth Complex, Minnesota: Economic Geology, v. 93, n. 7, p. 1052–1062, doi:https://doi.org/10.2113/gsecongeo.93.7.1052
    OpenUrlAbstract/FREE Full Text
  103. Roedder, 1951.↵
    1. Roedder E.
    , 1951, Low Temperature Liquid Immiscibility in the System K2O-FeO-Al2O3-SiO2: American Mineralogist, v. 36, n. 3–4, p. 282–286.
    OpenUrlGeoRefWeb of Science
  104. Roeder and Osborn, 1966.↵
    1. Roeder P. L.,
    2. Osborn E. F.
    , 1966, Experimental Data for System MgO-FeO-Fe2O3-CaAl2Si2O8-SiO2 and their Petrologic Implications: American Journal of Science, v. 264, n. 6, p. 428–480, doi:https://doi.org/10.2475/ajs.264.6.428
    OpenUrlAbstract
  105. Roedder and Weiblen, 1970.↵
    1. Roedder E.,
    2. Weiblen P. W.
    , 1970, Silicate Liquid Immiscibility in Lunar Magmas, Evidenced by Melt Inclusions in Lunar Rocks: Science, v. 167, n. 3918, p. 641–644, doi:https://doi.org/10.1126/science.167.3918.641
    OpenUrlAbstract/FREE Full Text
  106. Sato, 1978.↵
    1. Dimitriev L.,
    2. Heitrtzler J.,
    3. Aguilar R.,
    4. Cambon P.,
    5. Dick H. J. B.,
    6. Dungan M.,
    7. Erickson A.,
    8. Hodges F. N.,
    9. Honnorez J.,
    10. Kirkpatrick R. J.,
    11. Matthews D.,
    12. Ohnenstetter D.,
    13. Petersen N.,
    14. Sato H.,
    15. Schmincke H. U.
    1. Sato H.
    , 1978, Segregation vesicles and immiscible liquid droplets in ocean-floor basalt of Hole 396B, IPOD/DSDP Leg 46, in Dimitriev L., Heitrtzler J., Aguilar R., Cambon P., Dick H. J. B., Dungan M., Erickson A., Hodges F. N., Honnorez J., Kirkpatrick R. J., Matthews D., Ohnenstetter D., Petersen N., Sato H., Schmincke H. U., and Kaneps, volume authors, Initial Repots of the deep Sea Drilling Project, v. 46, p. 283–291, doi:https://doi.org/10.2973/dsdp.proc.46.118.1979
    OpenUrlCrossRef
  107. Sato, 1971.↵
    1. Ulmer G. C.
    1. Sato M.
    , 1971, Electrochemical measurements and control of oxygen fugacty and other gaseous fugacities with solid electrolyte sensors, in Ulmer G. C., editor, Research Techniques for High Pressure and High Temperature: New York, Springer Verlag, p. 43–99, doi:https://doi.org/10.1007/978-3-642-88097-1_3
    OpenUrlCrossRef
  108. Shaw, 1967.↵
    1. Abelson P. H.
    1. Shaw H. R.
    , 1967, Hydrogen osmosis in hydrothermal experiments, in Abelson P. H., editor, Researches in Geochemistry, volume 2: New York, John Wiley and Sons, p. 521–541.
  109. Sisson and Grove, 1993a.↵
    1. Sisson T. W.,
    2. Grove T. L.
    , 1993a, Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism: Contributions to Mineralogy and Petrology, v. 113, n. 2, p. 143–166, doi:https://doi.org/10.1007/BF00283225
    OpenUrlCrossRefGeoRefWeb of Science
  110. Sisson and Grove, 1993b.↵
    1. Sisson T. W.,
    2. Grove T. L.
    1993b, Temperatures and H2O Contents of Low-MgO High-Alumina Basalts: Contributions to Mineralogy and Petrology, v. 113, n. 2, p. 167–184, doi:https://doi.org/10.1007/BF00283226
    OpenUrlCrossRefGeoRefWeb of Science
  111. Sparks, 1988.↵
    1. Sparks R. S. J.
    , 1988, Petrology and Geochemistry of the Loch Ba Ring-Dyke, Mull (NW Scotland): An Example of the Extreme Differentiation of Tholeiitic Magmas: Contributions to Mineralogy and Petrology, v. 100, n. 4, p. 446–461, doi:https://doi.org/10.1007/BF00371374
    OpenUrlCrossRefGeoRefWeb of Science
  112. Sparks and others 1977.↵
    1. Sparks S. R. J.,
    2. Sigurdsson H.,
    3. Wilson L.
    , 1977, Magma Mixing: A Mechanism for Triggering Acid Explosive Eruptions: Nature, v. 267, p. 315–318, doi:https://doi.org/10.1038/267315a0
    OpenUrlCrossRefGeoRefWeb of Science
  113. Takahashi, 1986.↵
    1. Takahashi E.
    , 1986, Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle: Journal of Geophysical Research-Solid Earth, v. 91, n. B9, p. 9367–9382, doi:https://doi.org/10.1029/JB091iB09p09367
    OpenUrlCrossRef
  114. Tegner, 1997.↵
    1. Tegner C.
    , 1997, Iron in Plagioclase as a Monitor of the Differentiation of the Skaergaard Intrusion: Contributions to Mineralogy and Petrology, v. 128, n. 1, p. 45–51, doi:https://doi.org/10.1007/s004100050292
    OpenUrlCrossRefGeoRefWeb of Science
  115. Thy and others 2009.↵
    1. Thy P.,
    2. Lesher C. E.,
    3. Tegner C.
    , 2009, The Skaergaard liquid line of descent revisited: Contributions to Mineralogy and Petrology, v. 157, p. 735–747, doi:https://doi.org/10.1007/s00410-008-0361-6
    OpenUrlCrossRefGeoRefWeb of Science
  116. Toplis and Carroll, 1995.↵
    1. Toplis M. J.,
    2. Carroll M. R.
    , 1995, An Experimental-Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase-Relations, and Mineral-Melt Equilibria in Ferro-Basaltic Systems: Journal of Petrology, v. 36, n. 5, p. 1137–1170, doi:https://doi.org/10.1093/petrology/36.5.1137
    OpenUrlCrossRefGeoRefWeb of Science
  117. Tormey and others 1987.↵
    1. Tormey D. R.,
    2. Grove T. L.,
    3. Bryan W. B.
    , 1987, Experimental petrology of normal MORB near the Kane Fracture Zone: 22°–25°N, mid-Atlantic ridge: Contributions to Mineralogy and Petrology, v. 96, n. 2, p. 121–139, doi:https://doi.org/10.1007/BF00375227
    OpenUrlCrossRefGeoRefWeb of Science
  118. Tuttle, 1948.↵
    1. Tuttle O. F.
    , 1948, A New Hydrothermal Quenching Apparatus: American Journal of Science, v. 246, n. 10, p. 628–635, doi:https://doi.org/10.2475/ajs.246.10.628
    OpenUrlAbstract/FREE Full Text
  119. Tuttle and Bowen, 1958.↵
    1. Tuttle O. F.,
    2. Bowen N. L.
    , 1958, Origin of Granite in the Light of Experimental Studies in the system NaAlSi3O8-SiO2-H2O: Geological Society of America Memoir 74, 153 p., doi:https://dx.doi.org/10.1130/MEM74
    OpenUrlCrossRef
  120. VanTongeren and Mathez, 2012.↵
    1. VanTongeren J. A.,
    2. Mathez E. A.
    , 2012, Large-scale liquid immiscibility at the top of the Bushveld Complex, South Africa: Geology, v. 40, n. 6, p. 491–494, doi:https://doi.org/10.1130/G32980.1
    OpenUrlAbstract/FREE Full Text
  121. Visser and Koster van Groos, 1979.↵
    1. Visser W.,
    2. Koster van Groos A. F.
    , 1979, Effects of P2O5 and TiO2 on Liquid-Liquid Equilibria in the System K2O-FeO-Al2O3-SiO2: American Journal of Science, v. 279, n. 8, p. 970–988, doi:https://doi.org/10.2475/ajs.279.8.970
    OpenUrlAbstract/FREE Full Text
  122. Wager and Deer, 1939.↵
    1. Wager L. R.,
    2. Deer W. A.
    , 1939, The petrology of the Skaergaard intrusion, Kangerdlugssuaq, East Greenland: Meddelelser om Grønland, v. 105, p. 1–352.
    OpenUrl
  123. Wager and Brown, 1968.↵
    1. Wager L. R.,
    2. Brown G. M.
    , 1968, Layered Igneous Rocks: Edinburgh, Scotland, Oliver and Boyd, 588 p.
  124. Walker and Delong, 1982.↵
    1. Walker D.,
    2. Delong S. E.
    , 1982, Soret Separation of mid-Ocean Ridge Basalt Magma: Contributions to Mineralogy and Petrology, v. 79, n. 3, p. 231–240, doi:https://doi.org/10.1007/BF00371514
    OpenUrlCrossRefGeoRefWeb of Science
  125. Walker and others 1977.↵
    1. Walker D.,
    2. Longhi J.,
    3. Lasaga A. C.,
    4. Stolper E. M.,
    5. Grove T. L.,
    6. Hays J. F.
    , 1977, Slowly cooled microgabbros 15555 and 15065, in Lunar Science Conference, 8th, Houston, Texas, March 14–18, 1977, Proceedings, v. 2: New York, Pergamon, p. 1521–1547.
  126. Walker and others 1979.↵
    1. Walker D.,
    2. Shibata T.,
    3. Delong S. E.
    , 1979, Abyssal Tholeiites from the Oceanographer Fracture-Zone. II. Phase-Equilibria and Mixing: Contributions to Mineralogy and Petrology, v. 70, n. 2, p. 111–125, doi:https://doi.org/10.1007/BF00374440
    OpenUrlCrossRefGeoRefWeb of Science
  127. Walker and others 1981.↵
    1. Walker D.,
    2. Lesher C. E.,
    3. Hays J. F.
    , 1981, Soret separation of lunar liquid: Proceedings of the Lunar and Planetary Science Conference 12B, p. 991–999.
  128. Walter, 1998.↵
    1. Walter M. J.
    , 1998, Melting of garnet peridotite and the origin of komatiite and depleted lithosphere: Journal of Petrology, v. 39, n. 1, p. 29–60, doi:https://doi.org/10.1093/petroj/39.1.29
    OpenUrlCrossRefGeoRefWeb of Science
  129. Watson, 1976.↵
    1. Watson E. B.
    , 1976, Two-Liquid Partition Coefficients: Experimental Data and Geochemical Implications: Contributions to Mineralogy and Petrology, v. 56, n. 1, p. 119–134, doi:https://doi.org/10.1007/BF00375424
    OpenUrlCrossRefGeoRefWeb of Science
  130. Williams, 1966.↵
    1. Williams D. W.
    , 1966, Externally Heated Cold-Seal Pressure Vessels For Use To 1200 °C at 1000 bars: Mineralogical Magazine and Journal of the Mineralogical Society, v. 35, p. 1003–1012, doi:https://doi.org/10.1180/minmag.1966.035.275.14
    OpenUrlCrossRefGeoRef
  131. Williams, 1968.↵
    1. Williams D. W.
    1968, Improved Cold Seal Pressure Vessels to Operate to 1100 °C at 3 kilobars: American Mineralogist, v. 53, p. 1765–1769.
    OpenUrlGeoRefWeb of Science
  132. Yoder, 1950.↵
    1. Yoder H. S. Jr..
    , 1950, High-low Quartz inversion up to 10,000 bars: Eos Transactions of the American Geophysical Union, v. 31, n. 6, p. 827–835, doi:https://doi.org/10.1029/TR031i006p00827
    OpenUrlCrossRef
  133. Yoder, 1952.↵
    1. Yoder H. S. Jr..
    1952, Change of Melting Point of Diopside with Pressure: The Journal of Geology, v. 60, n. 4, p. 364–374, doi:https://doi.org/10.1086/625984
    OpenUrlCrossRefGeoRef
  134. Yoder and Tilley, 1962.↵
    1. Yoder H. S. Jr..,
    2. Tilley C. E.
    , 1962, Origin of Basalt Magmas: An Experimental Study of Natural and Synthetic Rock Systems: Journal of Petrology, v. 3, n. 3, p. 342–532, doi:https://doi.org/10.1093/petrology/3.3.342
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 318 (1)
American Journal of Science
Vol. 318, Issue 1
1 Jan 2018
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Magmatic processes leading to compositional diversity in igneous rocks: Bowen (1928) revisited
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Magmatic processes leading to compositional diversity in igneous rocks: Bowen (1928) revisited
Timothy L. Grove, Stephanie M. Brown
American Journal of Science Jan 2018, 318 (1) 1-28; DOI: 10.2475/01.2018.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Magmatic processes leading to compositional diversity in igneous rocks: Bowen (1928) revisited
Timothy L. Grove, Stephanie M. Brown
American Journal of Science Jan 2018, 318 (1) 1-28; DOI: 10.2475/01.2018.02
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • FRACTIONAL CRYSTALLIZATION OF BASALT UNDER ANHYDROUS (DRY) CONDITIONS: THE THOLEIITIC TREND
    • BOWEN'S RIVAL IGNEOUS PROCESSES
    • CONCLUDING REMARKS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • fractional crystallization
  • magma mixing
  • crustal assimilation
  • liquid immiscibility
  • Soret diffusion
  • experimental petrology
  • phase equilibrium

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire