Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Impact of the North American monsoon on isotope paleoaltimeters: Implications for the paleoaltimetry of the American southwest

Alexis Licht, Jay Quade, Andrew Kowler, Marie de los Santos, Adam Hudson, Andrew Schauer, Katharine Huntington, Peter Copeland and Timothy Lawton
American Journal of Science January 2017, 317 (1) 1-33; DOI: https://doi.org/10.2475/01.2017.01
Alexis Licht
* Department of Geosciences, University of Arizona, Tucson, Arizona USA
** Department of Earth and Space Sciences, University of Washington, Seattle, Washington USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: licht@uw.edu
Jay Quade
* Department of Geosciences, University of Arizona, Tucson, Arizona USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Kowler
* Department of Geosciences, University of Arizona, Tucson, Arizona USA
*** Department of Earth, Space, and Planetary Sciences, UCLA, Los Angeles, California USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marie de los Santos
* Department of Geosciences, University of Arizona, Tucson, Arizona USA
§ Department of Earth and Atmospheric Sciences, University of Houston, Texas USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam Hudson
* Department of Geosciences, University of Arizona, Tucson, Arizona USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Schauer
** Department of Earth and Space Sciences, University of Washington, Seattle, Washington USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katharine Huntington
** Department of Earth and Space Sciences, University of Washington, Seattle, Washington USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Copeland
§ Department of Earth and Atmospheric Sciences, University of Houston, Texas USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy Lawton
§§ Centro de Geociencias, Universidad Nacional Autónoma de México, Querétaro, México
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Adams D. K.,
    2. Comrie A. C.
    , 1997, The North American Monsoon: Bulletin of the American Meteorological Society, v. 78, p. 2197–2213, doi:https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2
    OpenUrlCrossRefWeb of Science
    1. Lawton T. F.,
    2. McMillan N. J.,
    3. McLemore V. T.
    1. Amato J. M.
    , 2000, Structural relationships in the Florida Mountains, southwestern New Mexico - A review, in Lawton T. F., McMillan N. J., McLemore V. T., editors, Southwest Passage-A trip through the Phanerozoic: New Mexico Geologic Society Guidebook, 51st Field Conference, p. 103–108.
    1. Bayona G.,
    2. Lawton T. F.
    , 2003, Fault-Proximal stratigraphic record of episodic extension and oblique inversion, Bisbee basin, southwestern New Mexico, USA: Basin Research, v. 15, n. 2, p. 251–270, doi:https://doi.org/10.1046/j.1365-2117.2003.00199.x
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Blash K. W.,
    2. Bryson J. R.
    , 2007, Distinguishing Sources of Ground Water Recharge by Using δ2H and δ18O: Ground Water, v. 45, n. 3, p. 294–308, doi:https://doi.org/10.1111/j.1745-6584.2006.00289.x
    OpenUrlCrossRefGeoRefPubMed
  3. ↵
    1. Bird P.
    , 1979, Continental delamination and the Colorado Plateau: Journal of Geophysical Research-Solid Earth, v. 84, n. B13, p. 7561–7571, doi:https://doi.org/10.1029/JB084iB13p07561
    OpenUrlCrossRef
  4. ↵
    1. Boggs S. Jr..
    , 2009, Petrology of Sedimentary Rocks: Cambridge, England, Cambridge University Press, 600 p.
    1. Brand W. A.,
    2. Assonov S. S.,
    3. Coplen T. B.
    , 2010, Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report): Pure and Applied Chemistry, v. 82, n. 8, p. 1719–1733, doi:http://dx.doi.org/10.1351/PAC-REP-09-01-05
    OpenUrlCrossRef
  5. ↵
    1. Breecker D. O.,
    2. Sharp Z. D.,
    3. McFadden L. D.
    , 2009, Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA: G.S.A. Bulletin, v. 121, n. 3–4, p. 630–640, doi:https://doi.org/10.1130/B26413.1
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Bristow T. F.,
    2. Bonifacie M.,
    3. Derkowski A.,
    4. Eiler J. M.,
    5. Grotzinger J. P.
    , 2011, A hydrothermal origin for isotopically anomalous cap dolostone cements from south China: Nature, v. 474, p. 68–71, doi:https://doi.org/10.1038/nature10096
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  7. ↵
    1. Buck B. J.,
    2. Mack G. H.
    , 1995, Latest Cretaceous (Maastrichtian) aridity indicated by paleosols in the McRae Formation, south-central New Mexico: Cretaceous Research, v. 16, n. 5, p. 559–572, doi:https://doi.org/10.1006/cres.1995.1036
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Cassel E. J.,
    2. Graham S. A.,
    3. Chamberlain C. P.
    , 2009, Cenozoic tectonic and topographic evolution of the northern Sierra Nevada, California, through stable isotope paleoaltimetry in volcanic glass: Geology, v. 37, n. 6, p. 547–550, doi:https://doi.org/10.1130/G25572A.1
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Cather S.,
    2. Johnson B.
    , 1984, Eocene tectonics and depositional setting of west-central New Mexico and eastern Arizona New Mexico: Bureau of Mines and Mineral Resources Circular, n. 192, p. 1–33.
  10. ↵
    1. Cather S. M.,
    2. Connell S. D.,
    3. Chamberlin R. M.,
    4. McIntosh W. C.,
    5. Jones G. E.,
    6. Potochink A. R.,
    7. Lucas S. G.,
    8. Johnson P. S.
    , 2008, The Chuska erg: Paleogeomorphic and paleoclimatic implications of an Oligocene sand sea on the Colorado Plateau: GSA Bulletin, v. 120, n. 1–2, p. 13–33, doi:https://doi.org/10.1130/B26081.1
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Cather S. M.,
    2. Chapin C. E.,
    3. Kelley S. A.
    , 2012, Diachronous episodes of Cenozoic erosion in southwestern North America and their relationship to surface uplift, paleoclimate, paleodrainage, and paleoaltimetry: Geosphere, v. 8, n. 6, p. 1177–1206, doi:https://doi.org/10.1130/GES00801.1
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Chamberlain C. P.,
    2. Mix H. T.,
    3. Mulch A.,
    4. Hren M. T.,
    5. Kent-Corson M. L.,
    6. Davis S. J.,
    7. Horton T. W.,
    8. Graham S. A.
    , 2012, The Cenozoic climatic and topographic evolution of the western North American Cordillera: American Journal of Science, v. 312, n. 2, p. 213–262, doi:https://doi.org/10.2475/02.2012.05
    OpenUrlAbstract/FREE Full Text
    1. Clay D.
    , ms, 1970, Stratigraphy and petrology of the Mineta Formation in Pima and eastern Cochise Counties, Arizona: Tucson, Arizona, University of Arizona, Tucson, Ph. D. thesis, 221 p., doi:http://hdl.handle.net/10150/565218
  13. ↵
    1. Clinkscales C.,
    2. Lawton T.
    , 2015, Timing of Late Cretaceous shortening and basin development, Little Hatchet Mountains, southwestern New Mexico, USA – implications for regional Laramide tectonics: Basin Research, v. 27, n. 4, p. 453–472, doi:https://doi.org/10.1111/bre.12083
    OpenUrlCrossRef
  14. ↵
    1. Copeland P.,
    2. Murphy M. A.,
    3. Dupré W. R.,
    4. Lapen T. J.
    , 2011, Oligocene Laramide deformation in southern New Mexico and its implications for Farallon plate geodynamics: Geosphere, v. 7, n. 5, p. 1209–1219, doi:https://doi.org/10.1130/GES00672.1
    OpenUrlAbstract/FREE Full Text
    1. Dennis K.,
    2. Affek H.,
    3. Passey B.,
    4. Schrag D.,
    5. Eiler J.
    , 2011, Defining an absolute reference frame for ‘clumped’ isotope studies of CO2: Geochimica et Cosmochimica Acta, v. 75, n. 22, p. 7117–7131, doi:https://doi.org/10.1016/j.gca.2011.09.025
    OpenUrlCrossRefGeoRefWeb of Science
  15. ↵
    1. Dettman D. L.,
    2. Lohmann K. C.
    , 2000, Oxygen isotope evidence for high-altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene: Geology, v. 28, n. 3, p. 243–246, doi:https://doi.org/10.1130/0091-7613(2000)28<243:OIEFHS>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Deutz P.,
    2. Montanez I. P.,
    3. Curtis Monger H. C.
    , 2002, Morphology and stable and radiogenic isotope composition of pedogenic carbonates in late Quaternary relict soils, New Mexico, U.S.A.: An integrated record of pedogenic overprinting: Journal of Sedimentary Research, v. 72, n. 6, p. 809–822, doi:https://doi.org/10.1306/040102720809
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Dickinson W. R.
    , 1991, Tectonic setting of faulted Tertiary strata associated with the Catalina core complex in southern Arizona: GSA Special Paper, v. 264, p. 1–106, doi:https://doi.org/10.1130/spe264-p1
    OpenUrlCrossRef
  18. ↵
    1. Ding L.,
    2. Xu Q.,
    3. Yue Y.,
    4. Wang H.,
    5. Cai F.,
    6. Li S.
    , 2014, The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin: Earth and Planetary Science Letters, v. 392, p. 250–264, doi:https://doi.org/10.1016/j.epsl.2014.01.045
    OpenUrlCrossRefGeoRef
  19. ↵
    1. Douglas M. W.,
    2. Maddox R. A.,
    3. Howard K.,
    4. Reyes S.
    , 1993, The Mexican Monsoon: Journal of Climate, v. 6, p. 1665–1677, doi:https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2
    OpenUrlCrossRefWeb of Science
  20. ↵
    1. Dutton A.,
    2. Wilkinson B. H.,
    3. Welker J. M.,
    4. Bowen G. J.,
    5. Lohmann K. C.
    , 2005, Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA: Hydrological Processes, v. 19, n. 20, p. 4121–4146, doi:https://doi.org/10.1002/hyp.5876
    OpenUrlCrossRefWeb of Science
  21. ↵
    1. Eastoe C. J.,
    2. Dettman D. L.
    , 2016, Isotope amount effects in hydrologic and climate reconstructions of monsoon climates: Implications of some long-term data sets for precipitation: Chemical Geology, v. 430, p. 78–89, doi:https://doi.org/10.1016/j.chemgeo.2016.03.022
    OpenUrlCrossRef
  22. ↵
    1. Elhers T. A.,
    2. Poulsen C. J.
    , 2009, Influence of Andean uplift on climate and paleoaltimetry estimates: Earth and Planetary Science Letters, v. 281, n. 3–4, p. 238–248, doi:https://doi.org/10.1016/j.epsl.2009.02.026
    OpenUrlCrossRefGeoRefWeb of Science
  23. ↵
    Environmental Isotope Laboratory (EIL), 2015, Stable O + H isotopes in Tucson precipitation 1981-2012 monthly averages, dataset submitted to IAEA: Available online at http://www.geo.arizona.edu/node/154. University of Arizona.
  24. ↵
    1. Fan M.,
    2. Dettman D. L.
    , 2009, Late Paleocene high Laramide ranges in northeast Wyoming: Oxygen isotope study of ancient river water: Earth and Planetary Science Letters, v. 286, n. 1–2, p. 110–121, doi:https://doi.org/10.1016/j.epsl.2009.06.024
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Fan M.,
    2. Hough B. G.,
    3. Passey B. H.
    , 2014, Middle to late Cenozoic cooling and high topography in the central Rocky Mountains: Constraints from clumped isotope geochemistry: Earth and Planetary Science Letters, v. 408, p. 35–47, doi:https://doi.org/10.1016/j.epsl.2014.09.050
    OpenUrlCrossRefGeoRef
  26. ↵
    1. Feng T.,
    2. Poulsen C. J.
    , 2016, Refinement of Eocene lapse rates, fossil-leaf altimetry, and North American Cordilleran surface elevation estimates: Earth and Planetary Science Letters, v. 436, p. 130–141, doi:https://doi.org/10.1016/j.epsl.2015.12.022
    OpenUrlCrossRef
  27. ↵
    1. Flowers R. M.
    , 2010, The enigmatic rise of the Colorado Plateau: Geology, v. 38, n. 7, p. 671–672, doi:https://doi.org/10.1130/focus072010.1
    OpenUrlFREE Full Text
  28. ↵
    1. Flowers R. M.,
    2. Farley K. A.
    , 2012, Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon: Science, v. 338, n. 6114, p. 1616–1619, doi:https://doi.org/10.1126/science.1229390
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Flowers R. M.,
    2. Wernicke B. P.,
    3. Farley K. A.
    , 2008, Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry: GSA Bulletin, v. 120, n. 5–6, p. 571–587, doi:https://doi.org/10.1130/B26231.1
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Flynn J. J.,
    2. Cipolletti R. M.,
    3. Novacek M. J.
    , 1989, Chronology of early Eocene marine and terrestrial strata, Baja California, Mexico: GSA Bulletin, v. 101, n, 9, p. 1182–1196, doi:https://doi.org/10.1130/0016-7606(1989)101<1182:COEEMA>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Fricke H. C.
    , 2003, Investigation of early Eocene water-vapor transport and paleoelevation using oxygen isotope data from geographically widespread mammal remains: Geological Society of America Bulletin, v. 115, n. 9, p. 1088–1096, doi:https://doi.org/10.1130/B25249.1
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Fricke H. C.,
    2. Wing S. L.
    , 2004, Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene: American Journal of Science, v. 204, n. 7, p. 612–635, doi:https://doi.org/10.2475/ajs.304.7.612
    OpenUrlCrossRef
  33. ↵
    1. Fricke H.,
    2. Foreman B. Z.,
    3. Sewall J. O.
    , 2010, Integrated climate model-oxygen isotope evidence for a North American monsoon during the Late Cretaceous: Earth and Planetary Science Letters, v. 289, n. 1–2, p. 11–21, doi:https://doi.org/10.1016/j.epsl.2009.10.018
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Galewsky J.
    , 2009, Orographic precipitation isotopic ratios in stratified atmospheric flows: Implications for paleoelevation studies: Geology, v. 37, n. 9, p. 791–794, doi:https://doi.org/10.1130/G30008A.1
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Gallagher T. M.,
    2. Sheldon N. D.
    , 2016, Combining soil water balance and clumped isotopes to understand the nature and timing of pedogenic carbonate formation: Chemical Geology, v. 435, p. 79–91, doi:https://doi.org/10.1016/j.chemgeo.2016.04.023
    OpenUrlCrossRef
  36. ↵
    1. Gile L. H.,
    2. Peterson F. F.,
    3. Grossman R. B.
    , 1966, Morphological and genetic sequences of carbonate accumulation in desert soils: Soil Science, v. 101, n. 5, p. 347–360, doi:https://doi.org/10.1097/00010694-196605000-00001
    OpenUrlCrossRef
  37. ↵
    1. Jacques-Ayala C.,
    2. González-León C. M.,
    3. Roldán-Quintana J.
    1. González-León C. M.,
    2. Lawton T. F.
    , 1995, Stratigraphy, depositional environments, and origin of the Cabullona basin, northeastern Sonora, in Jacques-Ayala C., González-León C. M., Roldán-Quintana J., editors, Studies on the Mesozoic of Sonora and adjacent areas: Geological Society of America Special Paper, v. 301, p. 121–142, doi:https://doi.org/10.1130/0-8137-2301-9.121
    OpenUrlCrossRef
  38. ↵
    1. Greenwood D. R.,
    2. Wing S. L.
    , 1995, Eocene continental climates and latitudinal temperature gradients: Geology, v. 23, n. 11, p. 1044–1048, doi:https://doi.org/10.1130/0091-7613(1995)023<1044:ECCALT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Grimm J.
    , ms, 1978, Cenozoic pisolitic limestones of Pima and Cochise Counties, Arizona: Tucson, Arizona, University of Arizona, Master thesis, 81 p.
    1. Grover J. A.
    , 1984, Petrology, depositional environments and structural development of the Mineta Formation, Teran Basin, Cochise County, Arizona: Sedimentary Geology, v. 38, n. 1–4, p. 87–105, doi:https://doi.org/10.1016/0037-0738(84)90075-7
    OpenUrlCrossRefGeoRef
  39. ↵
    1. Henkes G. A.,
    2. Passey B. H.,
    3. Grossman E. L.,
    4. Shenton B. J.,
    5. Perez-Huerta A.,
    6. Yancey T. E.
    , 2015, Temperature limits for preservation of primary calcite clumped isotope paleotemperatures: Geochimica et Cosmochimica Acta, v. 139, p. 362–382, doi:https://doi.org/10.1016/j.gca.2014.04.040
    OpenUrlCrossRef
  40. ↵
    1. Hoke G. D.,
    2. Garzione C. N.,
    3. Araneo D. C.,
    4. Latorre C.,
    5. Strecker M. R.,
    6. Williams K. J.
    , 2009, The stable isotope altimeter: Do Quaternary pedogenic carbonates predict modern elevations?: Geology, v. 37, n. 11, p. 1015–1018, doi:https://doi.org/10.1130/G30308A.1
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Hoke G. D.,
    2. Aranibar J. N.,
    3. Viale M.,
    4. Araneo D. C.,
    5. Llano C.
    , 2013, Seasonal moisture sources and the isotopic composition of precipitation, rivers, and carbonates across the Andes at 32.5–35.5°S: Geochemistry, Geophysics, Geosystems, v. 14, n. 4, p. 962–978, doi:https://doi.org/10.1002/ggge.20045
    OpenUrlCrossRefGeoRef
  42. ↵
    1. Hoke G. D.,
    2. Zeng J.,
    3. Hren M. T.,
    4. Wissinka G. K.,
    5. Garzione C. N.
    , 2014, Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene: Earth and Planetary Science Letters, v. 394, p. 270–278, doi:https://doi.org/10.1016/j.epsl.2014.03.007
    OpenUrlCrossRefGeoRef
  43. ↵
    1. Hough B. G.,
    2. Fan M.,
    3. Passey B. H.
    , 2014, Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimate reconstruction: Earth and Planetary Science Letters, v. 391, p. 110–120, doi:https://doi.org/10.1016/j.epsl.2014.01.008
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Hren M. T.,
    2. Pagani M.,
    3. Erwin D. M.,
    4. Brandon M.
    , 2010, Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada: Geology, v. 38, n. 1, p. 7–10, doi:https://doi.org/10.1130/G30215.1
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Huber M.,
    2. Goldner A.
    , 2012, Eocene Monsoons: Journal of Asian Earth Sciences, v. 44, p. 3–23, doi:https://doi.org/10.1016/j.jseaes.2011.09.014
    OpenUrlCrossRefGeoRef
  46. ↵
    1. Humphreys E.,
    2. Hessler E.,
    3. Dueker K.,
    4. Farmer G. L.,
    5. Erslev E.,
    6. Atwater T.
    , 2003, How Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United States: International Geology Review, v. 45, n. 7, p. 575–595, doi:https://doi.org/10.2747/0020-6814.45.7.575
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Huntington K. W.,
    2. Lechler A. R.
    , 2015, Carbonate clumped isotope thermometry in continental tectonics: Tectonophysics, v. 647–648, p. 1–20, doi:https://doi.org/10.1016/j.tecto.2015.02.019
    OpenUrlCrossRef
  48. ↵
    1. Huntington K. W.,
    2. Wernicke B. P.,
    3. Eiler J. M.
    , 2010, Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry: Tectonics, v. 29, n. 3, TC3005, doi:https://doi.org/10.1029/2009TC002449
    OpenUrlCrossRef
  49. ↵
    1. Huntington K. W.,
    2. Budd D. A.,
    3. Wernicke B. P.,
    4. Eiler J. M.
    , 2011, Use of Clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite: Journal of Sedimentary Research, v. 81, n. 9, p. 656–669, doi:https://doi.org/10.2110/jsr.2011.51
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Huntington K. W.,
    2. Saylor J.,
    3. Quade J.,
    4. Hudson A. M.
    , 2015, High late Miocene–Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry: Geological Society of America Bulletin, v. 127, n. 1–2, p. 181–199, doi:https://doi.org/10.1130/B31000.1
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Dickinson W.,
    2. Klute M.
    1. Inman K.
    , 1987, Depositional environments and sandstone petrography of Cretaceous sedimentary rocks, Adobe Canyon, Santa Rita Mountains, southeastern Arizona, in Dickinson W., Klute M., editors, Mesozoic rocks of southern Arizona and adjacent areas: Arizona Geological Society Digest, v. 18, p. 301–314.
    OpenUrl
  52. ↵
    1. James C. N.,
    2. Houze R. A.
    , 2005, Modification of precipitation by coastal orography in storms crossing northern California: Monthly Weather Review, v. 133, n. 11, p. 3110–3131, doi:https://doi.org/10.1175/MWR3019.1
    OpenUrlCrossRef
  53. ↵
    1. Karlstrom K. E.,
    2. Lee J. P.,
    3. Kelley S. A.,
    4. Crow R. S.,
    5. Crossey L. J.,
    6. Young R. A.,
    7. Lazear G.,
    8. Beard L. S.,
    9. Richetts J. W.,
    10. Fox M.,
    11. Shuster D. L.
    , 2014, Formation of the Grand Canyon 5 to 6 million years ago through integration of older palaeocanyons: Nature Geoscience, v. 7, p. 239–244, doi:https://doi.org/10.1038/ngeo2065
    OpenUrlCrossRef
    1. Kelson J. R.,
    2. Huntington K. W.,
    3. Schauer A. J.,
    4. Saenger C.,
    5. Lechler A. R.
    , 2017, Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship: Geochimica et Cosmochimica Acta, v. 197, p. 104–131, doi:https://doi.org/10.1016/j.gca.2016.10.010
    OpenUrlCrossRef
  54. ↵
    1. Kent-Corson M. L.,
    2. Sherman L. S.,
    3. Mulch A.,
    4. Chamberlain C. P.
    , 2006, Cenozoic topographic and climatic response to changing tectonic boundary conditions in Western North America: Earth and Planetary Science Letters, v. 252, n. 3–4, p. 453–466, doi:https://doi.org/10.1016/j.epsl.2006.09.049
    OpenUrlCrossRefGeoRefWeb of Science
  55. ↵
    1. Kent-Corson M. L.,
    2. Barnosky A. D.,
    3. Mulch A.,
    4. Carrasco M. A.,
    5. Chamberlain C. P.
    , 2013, Possible regional tectonic controls on mammalian evolution in western North America: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 387, p. 17–26, doi:https://doi.org/10.1016/j.palaeo.2013.07.014
    OpenUrlCrossRefGeoRef
  56. ↵
    1. Kim S.,
    2. O'Neil J. R.
    , 1997, Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates: Geochimica et Cosmochimica Acta, v. 61, n. 16, p. 3461–3475, doi:https://doi.org/10.1016/S0016-7037(97)00169-5
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Knauth L. P.,
    2. Kennedy M. J.
    , 2009, The Late Precambrian greening of the Earth: Nature, v. 460, p. 728–732, doi:https://doi.org/10.1038/nature08213
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  58. ↵
    1. Kowler A. L.
    , ms, 2007, The stable carbon and oxygen isotopic composition of pedogenic carbonate and its relationship to climate and ecology in southeastern Arizona: Tucson, Arizona, University of Arizona, M.S. thesis, 56 p.
  59. ↵
    1. Lawton T. F.,
    2. Basabilvazo G. T.,
    3. Hodgson S. A.,
    4. Wilson D. A.,
    5. Mack G. H.,
    6. McIntosh W. C.,
    7. Lucas S. G.,
    8. Kietxke K. K.
    , 1993, Laramide stratigraphy of the Little Hatchet Mountains, southwestern New Mexico: New Mexico Geology, v. 15, p. 9–15.
    OpenUrlGeoRef
  60. ↵
    1. Lechler A. R.,
    2. Niemi N. A.,
    3. Hren M. T.,
    4. Lohman K. C.
    , 2013, Paleoelevation estimates for the northern and central proto–Basin and Range from carbonate clumped isotope thermometry: Tectonics, v. 32, n. 3, p. 295–316, doi:https://doi.org/10.1002/tect.20016
    OpenUrlCrossRefGeoRefWeb of Science
  61. ↵
    1. Levander A.,
    2. Schmandt B.,
    3. Miller M. S.,
    4. Liu K.,
    5. Karlstrom K. E.,
    6. Crow R. S.,
    7. Lee C.-T. A.,
    8. Humphreys E. D.
    , 2011, Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling: Nature, v. 472, p. 461–465, doi:https://doi.org/10.1038/nature10001
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  62. ↵
    1. Licht A.,
    2. van Cappelle M.,
    3. Abels H. A.,
    4. Ladant J.,
    5. Trabucho-Alexandre J.,
    6. France-Lanord C.,
    7. Donnadieu Y.,
    8. Vandenberghe J.,
    9. Rigaudier T.,
    10. Lecuyer C.,
    11. Terry D. Jr..,
    12. Adriaens R.,
    13. Boura A.,
    14. Guo Z.,
    15. Aung Naing Soe,
    16. Dupont-Nivet G.,
    17. Jaeger J.-J.
    , 2014, Asian monsoons in a late Eocene greenhouse world: Nature, v. 513, p. 501–506, doi:https://doi.org/10.1038/nature13704
    OpenUrlCrossRefGeoRefPubMed
  63. ↵
    1. Liu B.,
    2. Phillips F.,
    3. Hoines S.,
    4. Campbell A. R.,
    5. Sharma P.
    , 1995, Water movement in desert soil traced by hydrogen and oxygen isotopes, chloride, and chlorine-36, southern Arizona: Journal of Hydrology, v. 168, n. 1–4, p. 91–110, doi:https://doi.org/10.1016/0022-1694(94)02646-S
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Liu B.,
    2. Phillips F. M.,
    3. Campbell A. R.
    , 1996, Stable carbon and oxygen isotopes of pedogenic carbonates, Ajo Mountains, southern Arizona: Implications for paleoenvironmental change: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 124, n. 3–4, p. 233–246, doi:https://doi.org/10.1016/0031-0182(95)00093-3
    OpenUrlCrossRefGeoRef
  65. ↵
    1. Liu L.,
    2. Gurnis M.
    , 2010, Dynamic subsidence and uplift of the Colorado Plateau: Geology, v. 38, n. 7, p. 663–666, doi:https://doi.org/10.1130/G30624.1
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Chapin C. E.,
    2. Callender J. F.
    1. Lucas S.
    , 1983, The Baca formation and the Eocene-Oligocene Boundary in New Mexico, in Chapin C. E., Callender J. F., editors, Socorro Region II: New Mexico Geological Society Guidebook, v. 2, p. 187–192.
    OpenUrl
    1. Lucas S. G.,
    2. Lewis C.,
    3. Dickinson W. R.,
    4. Heckert A. B.
    , 2005, The late Cretaceous Tucson Mountains dinosaur: New Mexico Museum of Natural History and Science Bulletin, v. 29, p. 105–110.
    OpenUrl
  67. ↵
    1. McQuarrie N.,
    2. Chase C. G.
    , 2000, Raising the Colorado plateau: Geology, v. 28, p. 91–94, doi:https://doi.org/10.1130/0091-7613(2000)028<0091:RTCP>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. McQuarrie N.,
    2. Wernicke B. P.
    , 2005, An animated tectonic reconstruction of southwestern North America since 36 Ma: Geosphere, v. 1, n. 3, p. 147–172, doi:https://doi.org/10.1130/GES00016.1
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Mix H. T.,
    2. Mulch A.,
    3. Kent-Corson M. L.,
    4. Chamberlain C. P.
    , 2011, Cenozoic migration of topography in the North American Cordillera: Geology, v. 39, n. 1, p. 87–90, doi:https://doi.org/10.1130/G31450.1
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Moucha R.,
    2. Forte A. M.,
    3. Rowley D. B.,
    4. Mitrovica J. X.,
    5. Simmons N. A.,
    6. Grand S. P.
    , 2009, Deep mantle forces and the uplift of the Colorado Plateau: Geophysical Research Letters, v. 36, n. 19, doi:https://doi.org/10.1029/2009GL039778
    OpenUrlCrossRef
  71. ↵
    1. Mulch A.
    , 2016, Stable isotope paleoaltimetry and the evolution of landscapes and life: Earth and Planetary Science Letters, v. 433, p. 180–191, doi:https://doi.org/10.1016/j.epsl.2015.10.034
    OpenUrlCrossRefGeoRef
  72. ↵
    1. Mulch A.,
    2. Graham S. A.,
    3. Chamberlain C. P.
    , 2006, Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada: Science, v. 313, n. 5783, p. 87–89, doi:https://doi.org/10.1126/science.1125986
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Mulch A.,
    2. Teyssier C.,
    3. Cosca M. A.,
    4. Chamberlain C. P.
    , 2007, Stable isotope paleoaltimetry of Eocene core complexes in the North American Cordillera: Tectonics, v. 26, n. 4, doi:https://doi.org/10.1029/2006TC001995
    OpenUrlCrossRef
  74. ↵
    1. Novacek M. J.,
    2. Ferrusquia-Villafranca I.,
    3. Flynn J. J.,
    4. Wyss A. R.,
    5. Norell M. A.
    , 1991, Wasatchian (early Eocene) mammals and other vertebrates from Baja California, Mexico: The Lomas las Tetas de Cabra Fauna: Bulletin of the American Museum of Natural History, v. 208, p. 1–88, doi:http://hdl.handle.net/2246/903
    OpenUrlCrossRef
  75. ↵
    1. O'Brien G. R.,
    2. Kaufman D. S.,
    3. Sharp W. D.,
    4. Atudorei V.,
    5. Parnell R. A.,
    6. Crossey L. J.
    , 2006, Oxygen isotope composition of annually banded modern and mid-Holocene travertine and evidence of paleomonsoon floods, Grand Canyon, Arizona, USA: Quaternary Research, v. 65, n. 3, p. 366–379, doi:https://doi.org/10.1016/j.yqres.2005.12.001
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Pagani M.,
    2. Zachos J. C.,
    3. Freeman K. H.,
    4. Tipple B.,
    5. Bohaty S.
    , 2005, Marked decline in Atmospheric Carbon Dioxide Concentrations during the Paleogene: Science, v. 309, n. 5735, p. 600–603, doi:https://doi.org/10.1126/science.1110063
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Parsons T.,
    2. McCarthy J.
    , 1995, The active southwest margin of the Colorado Plateau: Uplift of mantle origin: GSA Bulletin, v. 107, n. 2, p. 139–147, doi:https://doi.org/10.1130/0016-7606(1995)107<0139:TASMOT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. Passey B. H.,
    2. Henkes G. A.
    , 2012, Carbonate clumped isotope bond reordering and geospeedometry: Earth and Planetary Science Letters, v. 351–352, p. 223–236, doi:https://doi.org/10.1016/j.epsl.2012.07.021
    OpenUrlCrossRef
  79. ↵
    1. Peirce H. W.,
    2. Damon P. E.,
    3. Shafiqullah M.
    , 1979, An Oligocene (?) Colorado plateau edge in Arizona: Tectonophysics, v. 61, n. 1–3, p. 1–24, doi:https://doi.org/10.1016/0040-1951(79)90289-0
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Peters N. A.,
    2. Huntington K. W.,
    3. Hoke G. D.
    , 2013, Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry: Earth and Planetary Science Letters, v. 361, p. 208–218, doi:https://doi.org/10.1016/j.epsl.2012.10.024
    OpenUrlCrossRefGeoRefWeb of Science
  81. ↵
    1. Poage M. A.,
    2. Chamberlain C. P.
    , 2001, Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change: American Journal of Science, v. 301, n. 1, p. 1–15, doi:https://doi.org/10.2475/ajs.301.1.1
    OpenUrlAbstract/FREE Full Text
  82. ↵
    1. Poore R. Z.,
    2. Pavich M. J.,
    3. Grissino-Mayer H. D.
    , 2005, Record of the North American southwest monsoon from Gulf of Mexico sediment cores: Geology, v. 33, n. 3, p. 209–212, doi:https://doi.org/10.1130/G21040.1
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. Poulsen C. J.,
    2. Elhers T. A.,
    3. Insel N.
    , 2010, Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes: Science, v. 328, n. 5977, p. 490–493, doi:https://doi.org/10.1126/science.1185078
    OpenUrlAbstract/FREE Full Text
  84. ↵
    1. Lucas S. G.,
    2. Zeigler K. E.,
    3. Kondrashov P. E.
    1. Prothero D. R.,
    2. Ludtke J. A.,
    3. Lucas S. G.
    , 2004, Magnetic stratigraphy of the middle Eocene (Duchesnean) Baca Formation, West-Central New Mexico, in Lucas S. G., Zeigler K. E., Kondrashov P. E., editors, Paleogene Mammals: New Mexico Museum of Natural History and Science Bulletin, v. 26, p. 55–58.
    OpenUrl
  85. ↵
    1. Quade J.,
    2. Cerling T. E.,
    3. Bowman J. R.
    , 1989, Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States: GSA Bulletin, v. 101, n. 4, p. 464–475, doi:https://doi.org/10.1130/0016-7606(1989)101<0464:SVITCA>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  86. ↵
    1. Quade J.,
    2. Garzione C.,
    3. Eiler J.
    , 2007a, Paleoelevation reconstruction using pedogenic carbonates: Reviews in Mineralogy and Geochemistry, v. 66, n. 1, p. 53–87, doi:https://doi.org/10.2138/rmg.2007.66.3
    OpenUrlFREE Full Text
  87. ↵
    1. Quade J.,
    2. Rech J. A.,
    3. Latorre C.,
    4. Betancourt J. L.,
    5. Gleason E.,
    6. Kalin M. T. K.
    , 2007b, Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert: Geochimica et Cosmochima Acta, v. 71, n. 15, p. 3772–3795, doi:https://doi.org/10.1016/j.gca.2007.02.016
    OpenUrlCrossRef
  88. ↵
    1. Quade J.,
    2. Breecker D. O.,
    3. Daeron M.,
    4. Eiler J.
    , 2011, The paleoaltimetry of Tibet: An isotopic perspective: American Journal of Science, v. 311, n. 2, p. 77–115, doi:https://doi.org/10.2475/02.2011.01
    OpenUrlAbstract/FREE Full Text
  89. ↵
    1. Quade J.,
    2. Eiler J.,
    3. Daeron M.,
    4. Achyuthan H.
    , 2013, The clumped isotope geothermometer in soil and paleosol carbonate: Geochimica et Cosmochimica Acta, v. 105, p. 92–107, doi:https://doi.org/10.1016/j.gca.2012.11.031
    OpenUrlCrossRefWeb of Science
  90. ↵
    1. Risi C.,
    2. Bony S.,
    3. Vimeux F.
    , 2008, Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect: Journal of Geophysical Research: Atmospheres, v. 113, n. D19, doi:https://doi.org/10.1029/2008JD009943
    OpenUrlCrossRef
  91. ↵
    1. Rowley D. B.
    , 2007, Stable isotope-based paleoaltimetry: Theory and validation: Reviews in Mineralogy and Geochemistry, v. 66, n. 1, p. 23–52, doi:https://doi.org/10.2138/rmg.2007.66.2
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Rowley D. B.,
    2. Currie B. S.
    , 2006, Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet: Nature, v. 439, p. 677–681, doi:https://doi.org/10.1038/nature04506
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  93. ↵
    1. Rowley D. B.,
    2. Garzione C. N.
    , 2007, Stable Isotope-Based Paleoaltimetry: Annual Review of Earth and Planetary Sciences, v. 35, p. 463–508, doi:https://doi.org/10.1146/annurev.earth.35.031306.140155
    OpenUrlCrossRefGeoRefWeb of Science
  94. ↵
    1. Rowley D. B.,
    2. Pierrehumbert R. T.,
    3. Currie B. S.
    , 2001, A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene: Earth and Planetary Science Letters, v. 188, n. 1–2, p. 253–268, doi:https://doi.org/10.1016/s0012-821x(01)00324-7
    OpenUrlCrossRefGeoRefWeb of Science
  95. ↵
    1. Roy M.,
    2. MacCarthy J. K.,
    3. Selverstone J.
    , 2005, Upper mantle structure beneath the eastern Colorado Plateau and Rio Grande rift revealed by Bouguer gravity, seismic velocities, and xenolith data: Geochemistry, Geophysics, Geosystems, v. 6, n. 10, Q10007, doi:https://doi.org/10.1029/2005GC001008
    OpenUrlCrossRef
  96. ↵
    1. Sahagian D.,
    2. Proussevitch A.,
    3. Carlson W.
    , 2002, Timing of Colorado Plateau uplift: Initial constraints from vesicular basalt-derived paleoelevations: Geology, v. 30, n. 9, p. 807–810, doi:https://doi.org/10.1130/0091-7613(2002)030<0807:TOCPUI>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Schauer A. J.,
    2. Kelson J.,
    3. Saenger C.,
    4. Huntington K. W.
    , 2016, Choice of 17O correction affects clumped isotope (Δ47) values of CO2 measured with mass spectrometry: Rapid Communications in Mass Spectrometry, v. 30, n. 24, p. 2607–2616, doi:https://doi.org/10.1002/rcm.7743
    OpenUrlCrossRef
  97. ↵
    1. Schemmel F.,
    2. Mikes T.,
    3. Rojay B.,
    4. Mulch A.
    , 2013, The impact of Topography on isotopes in precipitation across the central Anatolian Plateau (Turkey): American Journal of Science, v. 313, n. 2, p. 61–80, doi:https://doi.org/10.2475/02.2013.01
    OpenUrlAbstract/FREE Full Text
  98. ↵
    1. Mack G. M.,
    2. Giles K. A.
    1. Seager W. R.
    , 2004, Laramide (Late Cretaceous-Eocene) tectonics of southwestern New Mexico, in Mack G. M., Giles K. A., editors, The geology of New Mexico, A geologic history: New Mexico Geological Society Special Publication 11, p. 183–202.
  99. ↵
    1. Peterson J. D.
    1. Seager W. R.,
    2. Mack G. H.
    , 1986, Laramide paleotectonics of southern New Mexico, in Peterson J. D., editor, Paleotectonics of southern New Mexico: American Association of Petroleum Geologists, Memoir 41, p. 669–685.
  100. ↵
    1. Serkan-Arca M.,
    2. Kapp P.,
    3. Johnson R. A.
    , 2010, Cenozoic crustal extension in southeastern Arizona and implications for models of core-complex development: Tectonophysics, v. 488, n. 1–4, p. 174–190, doi:https://doi.org/10.1016/j.tecto.2010.03.021
    OpenUrlCrossRefGeoRef
  101. ↵
    1. Sewall J. O.,
    2. Sloan L. C.
    , 2006, Come a little bit closer: A high-resolution climate study of the early Paleogene Laramide foreland: Geology, v. 34, n. 2, p. 81–84, doi:https://doi.org/10.1130/G22177.1
    OpenUrlAbstract/FREE Full Text
  102. ↵
    1. Sewall J. O.,
    2. Sloan L. C.,
    3. Huber M.,
    4. Wing S.
    , 2000, Climate sensitivity to changes in land surface characteristics: Global and Planetary Change, v. 26, n. 4, p. 445–465, doi:https://doi.org/10.1016/S0921-8181(00)00056-4
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    1. Callender J. F.,
    2. Wilt J.,
    3. Clemons R. E.,
    4. James H. L.
    1. Shafiqullah M.,
    2. Damon P. E.,
    3. Lynch D. J.,
    4. Kuck P. H.,
    5. Rehrig W. A.
    , 1978, Mid-Tertiary Magmatism in Southeastern Arizona, in Callender J. F., Wilt J., Clemons R. E., James H. L., editors, Land of Cochise (Southeastern Arizona): New Mexico, New Mexico Geological Society Guidebook, 29th Annual Field Conference Guidebook, p. 231–241.
  104. ↵
    1. Snell K. E.,
    2. Koch P.,
    3. Druschke P.,
    4. Foreman B.,
    5. Eiler J. M.
    , 2014, High elevation of the ‘Nevadaplano’ during the Late Cretaceous: Earth and Planetary Science Letters, v. 386, p. 52–63, doi:https://doi.org/10.1016/j.epsl.2013.10.046
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Spencer J. E.
    , 1996, Uplift of the Colorado Plateau due to lithospheric attenuation during Laramide low-angle subduction: Journal of Geophysical Research-Solid Earth, v. 101, n. B6, p. 13595–13609, doi:https://doi.org/10.1029/96JB00818
    OpenUrlCrossRef
  106. ↵
    1. Thompson G. A.,
    2. Zoback M. L.
    , 1979, Regional geophysics of the Colorado Plateau: Tectonophysics, v. 61, n. 1–3, p. 149–181, doi:https://doi.org/10.1016/0040-1951(79)90296-8
    OpenUrlCrossRefGeoRefWeb of Science
  107. ↵
    1. Tindall J.,
    2. Flecker R.,
    3. Valdes P.,
    4. Schmidt D. N.,
    5. Markwick P.,
    6. Harris J.
    , 2010. Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean–atmosphere GCM: Implications for reconstructing early Eocene climate: Earth and Planetary Science Letters, v. 292, n. 3–4, p. 265–273, doi:https://doi.org/10.1016/j.epsl.2009.12.049
    OpenUrlCrossRefGeoRefWeb of Science
  108. ↵
    1. Van Wijk J. W.,
    2. Baldridge W. S.,
    3. Van Hunen J.,
    4. Goes S.,
    5. Aster R.,
    6. Coblentz D. D.,
    7. Grand S. P.,
    8. Ni J.
    , 2010, Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere: Geology, v. 38, n. 7, p. 611–614, doi:https://doi.org/10.1130/G31031.1
    OpenUrlAbstract/FREE Full Text
    1. Prothero D. R.,
    2. Emry R. J.
    1. Walsh S. L.,
    2. Prothero D. R.,
    3. Lundquist D. J.
    , 1996, Stratigraphy and paleomagnetism of the middle Eocene Friars Formation and Poway Group, southwestern San Diego County, California, in Prothero D. R., Emry R. J., editors, The Terrestrial Eocene-Oligocene Transition in North America: Cambridge, Cambridge University Press, p. 120–154, doi:https://doi.org/10.1017/cbo9780511665431.007
    OpenUrlCrossRef
  109. ↵
    Western Regional Climatic Center 2015, doi:http://www.wrcc.dri.edu/
  110. ↵
    1. Wright W. E.
    , ms, 2001, Delta-deuterium and delta-oxygen-18 in mixed conifer system in the United States southwest: The potential of delta-oxygen-18 in Pinus ponderosa tree rings as a natural environmental recorder: Tucson, Arizona, University of Arizona, Ph. D. dissertation, 328 p.
  111. ↵
    1. Wright W. E.,
    2. Long A.,
    3. Comrie A. C.,
    4. Leavitt S. W.,
    5. Cavazos T.,
    6. Eastoe C.
    , 2001, Monsoonal moisture sources revealed using temperature, precipitation, and precipitation stable isotope timeseries: Geophysical Research Letters, v. 28, n. 5, p. 787–790, doi:https://doi.org/10.1029/2000GL012094
    OpenUrlCrossRefWeb of Science
  112. ↵
    1. Zandt G.,
    2. Gilbert H.,
    3. Owens T. J.,
    4. Ducea M.,
    5. Saleeby J.,
    6. Jones C. H.
    , 2004, Active foundering of a continental arc root beneath the southern Sierra Nevada in California: Nature, v. 431, p. 41–46, doi:https://doi.org/10.1038/nature02847
    OpenUrlCrossRefGeoRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 317 (1)
American Journal of Science
Vol. 317, Issue 1
1 Jan 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Impact of the North American monsoon on isotope paleoaltimeters: Implications for the paleoaltimetry of the American southwest
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Impact of the North American monsoon on isotope paleoaltimeters: Implications for the paleoaltimetry of the American southwest
Alexis Licht, Jay Quade, Andrew Kowler, Marie de los Santos, Adam Hudson, Andrew Schauer, Katharine Huntington, Peter Copeland, Timothy Lawton
American Journal of Science Jan 2017, 317 (1) 1-33; DOI: 10.2475/01.2017.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Impact of the North American monsoon on isotope paleoaltimeters: Implications for the paleoaltimetry of the American southwest
Alexis Licht, Jay Quade, Andrew Kowler, Marie de los Santos, Adam Hudson, Andrew Schauer, Katharine Huntington, Peter Copeland, Timothy Lawton
American Journal of Science Jan 2017, 317 (1) 1-33; DOI: 10.2475/01.2017.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • BACKGROUND AND APPROACH
    • RESULTS
    • OXYGEN ISOTOPE-BASED PALEOALTIMETRY IN THE AMERICAN SOUTHWEST
    • APPLICATION TO MID-CENOZOIC PALEOALTIMETRY AT THE SOUTHERN EDGE OF THE COLORADO PLATEAU
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Paleoaltimetry
  • Colorado Plateau
  • oxygen isotopes

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire