Abstract
Paleoaltimetric studies have characterized in detail the relationship between carbonate oxygen isotope ratios (δ18Oc) and elevation in orogens with simple, single-moisture-source hydrological systems, and applied this relationship to ancient continental carbonates to provide constraints on their past elevation. However, mixing of different atmospheric moisture sources in low-elevation orogens should affect δ18Oc values, but this effect has not yet been confirmed unequivocally. In the American Southwest, summer monsoonal moisture, sourced in the Equatorial Pacific and the Gulf of Mexico, and winter moisture, sourced in the East Pacific, both contribute to annual rainfall. We present stable isotope results from Quaternary carbonates within the American Southwest to characterize the regional δ18Oc-elevation relationship. We then provide stable isotope results from local Eocene carbonates to reconstruct late Laramide paleoelevations.
The Quaternary δ18Oc-elevation relationship in the American Southwest is not as straightforward as in more simple hydrological systems. δ18Oc changes with altitude are non-linear, scattered, and display an apparent isotopic lapse rate inversion above 1200 m of elevation. We speculate that decreasing surface temperatures at high altitudes limit the duration of carbonate growth to the summer months, biasing δ18Oc values toward higher values typical of the summer monsoon and leading to lapse rate inversion.
δ18Oc-elevation relationships based on modern water isotope data or distillation models predict paleoelevations that range up to as much as 2 km higher than the modern elevations of 2000 to 2400 m for our late Eocene sites located at the southern edge of the Colorado Plateau. By contrast, our δ18Oc-elevation relationship for the American Southwest yields lower paleoelevation estimates. These alternate estimates nonetheless suggest that significant elevation (at least ∼1 km) had already been attained by the Eocene, but are also compatible with < 1 km of uplift by post-Laramide mechanisms. Our results show the limitations of standard δ18Oc-elevation models in complex hydrological systems and suggest that similar mechanisms may have led to summer-biased paleoaltimetry estimates for the initial stages of other orogenies —in the American Southwest and elsewhere.
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.