Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Ion microprobe 232Th-208Pb ages from high common Pb monazite, Morefield Mine, Amelia County, Virginia: Implications for Alleghanian tectonics

Elizabeth J. Catlos and Nathan R. Miller
American Journal of Science May 2016, 316 (5) 470-503; DOI: https://doi.org/10.2475/05.2016.03
Elizabeth J. Catlos
The University of Texas at Austin, Jackson School of Geosciences, Department of Geological Sciences, 1 University Station C9000, EPS 1.130, Austin, Texas 78712
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ejcatlos@gmail.com
Nathan R. Miller
The University of Texas at Austin, Jackson School of Geosciences, Department of Geological Sciences, 1 University Station C9000, EPS 1.130, Austin, Texas 78712
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Aleinikoff J. N.,
    2. Hayes T. S.,
    3. Evans K. V.,
    4. Mazdab F. K.,
    5. Pillers R. M.,
    6. Fanning C. M.
    , 2012, SHRIMP U/Pb Ages of xenotime and monazite from the Spar Lake Red Bed-associated CU–Ag Deposit, Western Montana: Implications for ore genesis: Economic Geology, v. 107, n. 6, p. 1251–1274, doi:http://dx.doi.org/10.2113/econgeo.107.6.1251
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Bailey C. M.
    , 2004, Significant southwestward transport of the Goochland Terrane along the Spotsylvania high-strain zone, Virginia Piedmont: Geological Society of America Abstracts with Programs, v. 36, n. 2, p. 106.
    OpenUrl
  3. ↵
    1. Bailey C. M.,
    2. Owens B. E.
    , 2012, Traversing suspect terranes in the central Virginia Piedmont: From Proterozoic anorthosites to modern earthquakes: Geological Society of America Field Guide, v. 29, p. 327–344, doi:http://dx.doi.org/10.1130/2012.0029(10)
    OpenUrlCrossRef
  4. ↵
    1. Bailey C. M.,
    2. Owens B. E.,
    3. Shirvell C. R.
    , 2005, Northern ancestry for the Goochland terrane as a displaced fragment of Laurentia: Comment and Reply: COMMENT: Geology, v. 33, n. 1, p. e70, doi:http://dx.doi.org/10.1130/0091-7613-33.1.e70
    OpenUrlFREE Full Text
  5. ↵
    1. Baldwin J. A.,
    2. Guevara V. E.,
    3. Foster D. A.
    , 2013, Constraining the Proterozoic growth and modification of the western North American Craton in northern Idaho using monazite and xenotime petrochronology: Geological Society of America Abstracts with Programs, v. 45, n. 7, p. 880.
    OpenUrl
  6. ↵
    1. Baldwin J. R.,
    2. Hill P. G.,
    3. von Knorring O. O.,
    4. Oliver G. J. H.
    , 2000, Exotic aluminum phosphates, natromontebrasite, brazilianite, goyazite, gorceixite and crandallite from rare-element pegmatites in Namibia: Mineralogical Magazine, v. 64, n. 6, p. 1147–1164, doi:http://dx.doi.org/10.1180/002646100549940
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Bartholomew M. J.,
    2. Tollo R. P.
    , 2004, Northern ancestry for the Goochland Terrane as a displaced fragment of Laurentia: Geology, v. 32, n. 8, p. 669–672, doi:http://dx.doi.org/10.1130/G20520.1
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Blake D. E.,
    2. Stoddard E.F.
    , 2011, Transcurrent transfer zone and dextral releasing offset; the Nutbush Creek-Lake Gordon Fault system in the eastern North Carolina Piedmont: Geological Society of America Abstracts with Programs, v. 43, n, 2, p. 16.
    OpenUrl
  9. ↵
    1. Blake D. E.,
    2. Clark T. W.,
    3. Stoddard E. F.,
    4. Hames W. E.,
    5. Heller M. J.,
    6. Grimes W. S.,
    7. Robitaille K. R.,
    8. Hibbard J. P.
    , 2001, Ductile-brittle relationships on the western flank of the Raleigh metamorphic belt, North Carolina: Geological Society of America Abstracts with Programs, v. 33, n. 2, p. 19.
    OpenUrl
  10. ↵
    1. Bobyarchick A. R.,
    2. Glover L. III.
    , 1979, Deformation and metamorphism in the Hylas Zone and adjacent parts of the eastern Piedmont in Virginia: Geological Society of America Bulletin, v. 90, n. 8, p. 739–752, doi:http://dx.doi.org/10.1130/0016-7606(1979)90<739:DAMITH>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Boggs K. J. E.,
    2. Kamo S. L.,
    3. Simony P.,
    4. Moore J.,
    5. Archibald D.
    , 2002, A comparison of CHIME and ID-TIMS U/Pb monazite ages from the Rocky Mountain Trench near Golden, British Columbia, Canada and the importance of CHIME analyses: Geological Society of America Abstracts with Programs, v. 34, p. 68.
    OpenUrl
  12. ↵
    1. Bradley D.,
    2. Buchwaldt R.,
    3. Shea E.,
    4. Bowring S.,
    5. O'Sullivan P.,
    6. Benowitz J.,
    7. Bradley L.
    , 2013, Geochronology and orogenic context of Northern Appalachian lithium-cesium-tantalum pegmatites: Geological Society of America Abstracts with Programs, v. 45, n. 1, p. 108.
    OpenUrl
  13. ↵
    1. Broussolle A.,
    2. Stipska P.,
    3. Lehmann J.,
    4. Schulmann K.,
    5. Hacker B. R.,
    6. Holder R.,
    7. Kylander-Clark A. R. C.,
    8. Hanzel P.,
    9. Racek M.,
    10. Hasalová P.,
    11. Lexa O.,
    12. Hrdlickova K.,
    13. Burianek D.
    , 2015, P-T-t-D record of crustal-scale horizontal flow and magma-assisted doming in the SW Mongolian Altai: Journal of Metamorphic Geology, v. 33, n. 4, p. 359–383, doi:http://dx.doi.org/10.1111/jmg.12124
    OpenUrlCrossRefGeoRef
  14. ↵
    1. Buchwaldt R.,
    2. Owens B.
    , 2012, Decoding the multiscale magmatic cyclicity of magmatic pluton constructions using the Petersburg Granite, Virginia, USA, as an example: Geological Society of America Abstracts with Programs, v. 44, n. 7, p. 498.
    OpenUrl
  15. ↵
    1. Buick I. S.,
    2. Lana C.,
    3. Gregory C.
    , 2011, A LA-ICP-MS and SHRIMP U/Pb age constraint on the timing of REE mineralisation associated with Bushveld granites: South African Journal of Geology, v. 114, n. 1, p. 1–14, doi:http://dx.doi.org/10.2113/gssajg.114.1.1
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Burt D. M.
    , 1989, Compositional and phase relations among rare earth element minerals: Reviews in Mineralogy and Geochemistry, v. 21, p. 259–307.
    OpenUrlAbstract
  17. ↵
    1. Butler J,
    2. Horton J.
    , 1995, The Buggs Island granite pluton, emplacement related to right-lateral faulting in the eastern Piedmont, Virginia and North Carolina. Geological Society of America Abstracts with Programs, v. 27, n. 2, p. 39.
    OpenUrl
  18. ↵
    1. Carter M. W.
    , 2011, Subdivisions and field relations in the composite Petersburg Batholith near Richmond, VA: Geological Society of America Abstracts with Programs, v. 43, n. 2, p. 16.
    OpenUrl
  19. ↵
    1. Catlos E. J.
    , 2013, Versatile monazite: resolving geological records and solving challenges in materials science- Generalizations about monazite: Implications for geochronologic studies: American Mineralogist, v. 98, n. 5–6, p. 819–832, doi:http://dx.doi.org/10.2138/am.2013.4336
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Catlos E. J.,
    2. Çemen I.
    , 2005, Monazite ages and the evolution of the Menderes Massif, western Turkey: International Journal of Earth Sciences, v. 94, n. 2, p. 204–217, doi:http://dx.doi.org/10.1007/s00531-005-0470-7
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Catlos E. J.,
    2. Gilley L. D.,
    3. Harrison T. M.
    , 2002, Interpretation of monazite ages obtained via in situ analysis: Chemical Geology, v. 188, n. 3–4, p. 193–215, doi:http://dx.doi.org/10.1016/S0009-2541(02)00099-2
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Clavier N.,
    2. Podor R.,
    3. Dacheux N.
    , 2011, Crystal chemistry of the monazite structure: Journal of the European Ceramic Society, v. 31, n. 6, p. 941–976, doi:http://dx.doi.org/10.1016/j.jeurceramsoc.2010.12.019
    OpenUrlCrossRefWeb of Science
  23. ↵
    1. Corfu F.
    , 1988, Differential response of U–Pb systems in coexisting accessory minerals, Winnipeg River, Canadian Shield: Implications for Archean crustal growth and stabilization: Contributions to Mineralogy and Petrology, v. 98, n. 3, p. 312–325, doi:http://dx.doi.org/10.1007/BF00375182
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Cottle J. M.,
    2. Kylander-Clark A.,
    3. Hacker B. R.
    , 2012, Monazite petrochronology by laser ablation split stream inductively coupled plasma mass spectrometry (LASS-ICPMS): Mineralogical Magazine, v. 76, p. 1601.
    OpenUrlGeoRef
  25. ↵
    1. de Toledo M. C. M.,
    2. Pereira V. P.
    , 2003, Ocorrência e variabilidade de composição dos fosfatos do grupo da monazita em carbonatitos: Pesquisas em Geociências, v. 30, p. 83–98.
    OpenUrlGeoRef
  26. ↵
    1. Deuser W. G.,
    2. Herzog L. F.
    , 1962, Rubidium-strontium age determinations of muscovites and biotites from pegmatites of the Blue Ridge and Piedmont: Journal of Geophysical Research, v. 67, n. 5, p. 1997–2004, doi:http://dx.doi.org/10.1029/JZ067i005p01997
    OpenUrlCrossRefGeoRef
  27. ↵
    1. Dickin A. P.
    , 1987, La-Ce dating of Lewisian granulites to constrain the 138La beta -decay half-life: Nature, v. 325, p. 337–338, doi:http://dx.doi.org/10.1038/325337a0
    OpenUrlCrossRefGeoRef
  28. ↵
    1. Dicken C. L.,
    2. Nicholson S. W.,
    3. Horton J. D.,
    4. Kinney S. A.,
    5. Gunther G.,
    6. Foose M. P.,
    7. Mueller J. L.
    , 2008, Preliminary integrated geologic map databases for the United States: Delaware, Maryland, New York, Pennsylvania, and Virginia: Open-File Report - U. S. Geological Survey, version 1.1, doi:http://pubs.usgs.gov/of/2005/1325/index.htm.
    OpenUrlCrossRef
  29. ↵
    1. Didier A.,
    2. Bosse V.,
    3. Boulvais P.,
    4. Bouloton J.,
    5. Paquette J. L.,
    6. Montel J. M.,
    7. Devidal J. L.
    , 2013, Disturbance versus preservation of U–Th–Pb ages in monazite during fluid-rock interaction: Textural, chemical and isotopic in situ study in microgranites (Velay Dome, France): Contributions to Mineralogy and Petrology, v. 165, p. 1051–1072, doi:http://dx.doi.org/10.1007/s00410-012-0847-0
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. D'Oriano C.,
    2. Da Pelo S.,
    3. Podda F.,
    4. Cioni R.
    , 2008, Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS); setting operating conditions and instrumental performance: Periodico Di Mineralogia, v. 77, p. 65–74.
    OpenUrlGeoRef
    1. Druhan R. M.,
    2. Rollins F. O.
    , 1984, The Nutbush Creek fault zone in the Eastern Piedmont of North Carolina: Geological Society of America Abstracts with Programs, v. 16, p. 135.
    OpenUrl
  31. ↵
    1. Durrant J. M-,
    2. Sutter J. F.,
    3. Glover L. Ill.
    , 1980, Evidence for an Alleghanian (Hercynian?) metamorphic event in the Piedmont province near Richmond, Virginia: Geological Society of America Abstracts with Programs, v. 12, p. 176.
    OpenUrl
  32. ↵
    1. Farrar S. S.
    , 1984, The Goochland granulite terrane: Remobilized Grenville basement in the eastern Virginia Piedmont: Geological Society of America Special Paper, v. 194, p. 215–227, doi:http://dx.doi.org/10.1130/spe194-p215
    OpenUrlCrossRef
  33. ↵
    1. Fontaine W. F.
    , 1883, Notes on the occurrence of certain minerals in Amelia County, Virginia: American Journal of Science, Series 3, v. 25, n. 149, p. 330–339, doi:http://dx.doi.org/10.2475/ajs.s3-25.149.330
    OpenUrlCrossRef
  34. ↵
    1. Force E. R.
    , 1997, Geology and mineral resources of the Santa Catalina Mountains, southeastern Arizona: Tucson, Arizona, Monographs in Mineral Science, Center for Mineral Resources, v. 1, p 1–135.
    1. Fullagar P. D.
    , 1971, Age and origin of plutonic intrusions in the piedmont of the southeastern Appalachians: Geological Society of America Bulletin, v. 82, n. 10, p. 2845–2862, doi:http://dx.doi.org/10.1130/0016-7606(1971)82[2845:AAOOPI]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Gates A. E.,
    2. Glover L. I.
    , 1989, Alleghanian tectono-thermal evolution of the dextral transcurrent Hylas Zone, Virginia Piedmont, U.S.A.: Journal of Structural Geology, v. 11, n. 4, p. 407–419, doi:http://dx.doi.org/10.1016/0191-8141(89)90018-7
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Gates A. E.,
    2. Valentino D. W.,
    3. Gorring M. L.,
    4. Price R.,
    5. Rayner N.
    , 2007, Late-Grenville dextral transcurrent tectonics in the Central Appalachians: Geological Society of America Abstracts with Programs, v. 39, n. 1, p. 49.
    OpenUrl
  37. ↵
    1. Gibson R. L.,
    2. Townsend G. N.,
    3. Horton J. J.,
    4. Kunk M. J.,
    5. Zack T.
    , 2011, Age of mid-amphibolite facies Alleghanian metamorphism in rocks from the ICDP-USGS Eyreville-B core, Chesapeake Bay impact structure, Virginia: Geological Society of America Abstracts with Programs, v. 43, p. 437.
    OpenUrl
  38. ↵
    1. Glass J. J.
    , 1935, The pegmatite minerals from near Amelia, Virginia: American Mineralogist, v. 20, n. 11, p. 741–768.
    OpenUrlGeoRef
  39. ↵
    1. Glover L. III.,
    2. Evans N. H.,
    3. Patterson J. G.,
    4. Brown W. R.
    1. Glover L.
    , 1989, Tectonics of the Virginia Blue Ridge and Piedmont, in Glover L. III., Evans N. H., Patterson J. G., Brown W. R., editors, Tectonics of the Virginia Blue Ridge and Piedmont Culpeper to Richmond, Virginia: Washington, D. C., American Geophysical Union, p. 1–52, doi:http://dx.doi.org/10.1029/FT363
    OpenUrlCrossRef
  40. ↵
    1. Glover L. III.,
    2. Speer J. A.,
    3. Russell G. S.,
    4. Farrar S. S.
    , 1983, Ages of regional metamorphism and ductile deformation in the central and southern Appalachians: Lithos, v. 16, n. 3, p. 223–245, doi:http://dx.doi.org/10.1016/0024-4937(83)90026-9
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Glover L. III.,
    2. Costain J. K.,
    3. Coruh C.
    , 1995, Chapter 1. Tectonics of the central Appalachian orogen in the vicinity of corridor E-3: With implications for tectonics of the Southern Appalachians, in Centennial continent–ocean transect, explanatory pamphlet for transect E- 3, southwestern Pennsylvania to Baltimore Canyon trough: Boulder, Colorado, Geological Society of America, p. 1–49, doi:http://dx.doi.org/10.1130/DNAG-COT-E-3.2
    OpenUrlCrossRef
  42. ↵
    1. Gundersen L. C. S.,
    2. Gates A. E.
    , 1995, Mechanical response, chemical variation, and volume change in the Brookneal and Hylas shear zones, Virginia: Journal of Geodynamics, v. 19, n. 3, p. 231–252, doi:http://dx.doi.org/10.1016/0264-3707(94)00016-O
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Harlov D. E.,
    2. Wirth R.,
    3. Hetherington C. J.
    , 2011, Fluid-mediated partial alteration in monazite: The role of coupled dissolution-reprecipitation in element redistribution and mass transfer: Contributions to Mineralogy and Petrology, v. 162, n. 2, p. 329–348, doi:http://dx.doi.org/10.1007/s00410-010-0599-7
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Harrison T. M.,
    2. McKeegan K. D.,
    3. LeFort P.
    , 1995, Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating: Crystallization age and tectonic implications: Earth and Planetary Science Letters, v. 133, n. 3–4, p. 271–282, doi:http://dx.doi.org/10.1016/0012-821X(95)00091-P
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Harrison T. M.,
    2. Grove M.,
    3. McKeegan K. D.,
    4. Coath C. D.,
    5. Lovera O. M.,
    6. Le Fort P.
    , 1999, Origin and episodic emplacement of the Manaslu intrusive complex, Central Himalaya: Journal of Petrology, v. 40, n. 1, p. 3–19, doi:http://dx.doi.org/10.1093/petroj/40.1.3
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Hatcher R. D. Jr..
    , 2010, The Appalachian orogen: A brief summary: Geological Society of America Memoirs, v. 206, p. 1–19, doi:http://dx.doi.org/10.1130/2010.1206(01)
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Heinrich W.,
    2. Andrehs G.,
    3. Franz G.
    , 1997, Monazite-xenotime miscibility gap thermometry. 1. An empirical calibration: Journal of Metamorphic Geology, v. 15, n. 1, p. 3–16, doi:http://dx.doi.org/10.1111/j.1525-1314.1997.t01-1-00052.x
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Hellstrom J. C.,
    2. Paton C.,
    3. Woodhead J. D.,
    4. Hergt J.
    , 2008, Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis: Mineralogical Association of Canada Short Course, v. 40, p. 343–348.
    OpenUrl
  49. ↵
    1. Hetherington C. J.,
    2. Harlov D. E.
    , 2008, Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: Mechanics and fluid chemistry: American Mineralogist, v. 93, n. 5–6, p. 806–820, doi:http://dx.doi.org/10.2138/am.2008.2635
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Hetherington C. J.,
    2. Jercinovic M. J.,
    3. Williams M. L.,
    4. Mahan K.
    , 2008, Understanding geologic processes with xenotime: Composition, chronology, and a protocol for electron probe microanalysis: Chemical Geology, v. 254, n. 3–4, p. 133–147, doi:http://dx.doi.org/10.1016/j.chemgeo.2008.05.020
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Hibbard J.
    , 2000, Docking Carolina: Mid-Paleozoic accretion in the Southern Appalachians: Geology, v. 28, n. 2, p. 127–130, doi:http://dx.doi.org/10.1130/0091-7613(2000)28<127:DCMAIT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Hibbard J. P.,
    2. Stoddard E. F.,
    3. Secor D. T.,
    4. Dennis A. J.
    , 2002, The Carolina Zone: Overview of Neoproterozoic to Early Paleozoic peri-Gondwanan terranes along the eastern flank of the Southern Appalachians: Earth-Science Reviews, v. 57, n. 3–4, p. 299–339, doi:http://dx.doi.org/10.1016/S0012-8252(01)00079-4
    OpenUrlCrossRefGeoRef
  53. ↵
    1. Hinchey A. M.,
    2. Carr S. D.,
    3. Rayner N.
    , 2007, Bulk compositional controls on the preservation of age domains within metamorphic monazite: A case study from quartzite and garnet-cordierite-gedrite gneiss of Thor-Odin dome, Monashee complex, Canadian Cordillera: Chemical Geology, v. 240, n. 1–2, p. 85–102, doi:http://dx.doi.org/10.1016/j.chemgeo.2007.02.001
    OpenUrlCrossRefGeoRefWeb of Science
  54. ↵
    1. Hoisch T. D.,
    2. Wells M. L.,
    3. Grove M.
    , 2008, Age trends in garnet-hosted monazite inclusions from upper amphibolite facies schist in the northern Grouse Creek Mountains, Utah: Geochimica et Cosmochimica Acta, v. 72, n. 22, 5505–5520, doi:http://dx.doi.org/10.1016/j.gca.2008.08.012
    OpenUrlCrossRefGeoRefWeb of Science
  55. ↵
    1. Hokada T.,
    2. Motoyoshi Y.
    , 2006, Electron microprobe technique for U-Th-Pb and REE chemistry of monazite, and its implications for pre-, peak-, and postmetamorphic events pf the Lützow-Holm Complex and the Napier Complex, East Antarctica: Polar Geoscience, v. 19, p. 118–151.
    OpenUrlGeoRef
  56. ↵
    1. Holder R. M.,
    2. Hacker B. R.,
    3. Kylander-Clark A. C.
    , 2013, Monazite petrochronology from the UHP Western Gneiss region, Norway: Geological Society of America Abstracts with Programs, v. 45, n. 7, p. 797.
    OpenUrl
  57. ↵
    1. Hollis J.,
    2. Bailey C.
    , 2012, Kinematic history of brittle deformation and pseudotachylyte in the Hylas fault zone, eastern Piedmont, Virginia. Geological Society of America Abstracts with Programs, v. 44, n. 7, p. 595.
    OpenUrl
  58. ↵
    1. Dallmeyer R. D.
    1. Horton J. W. Jr..,
    2. Drake A. A. Jr..,
    3. Rankin D. W.
    , 1989, Tectonostratigraphic terranes and their Paleozoic boundaries in the central and southern Appalachians, in Dallmeyer R. D., editor, Terranes in the Circum-Atlantic Paleozoic orogens: Geological Society of America Special Papers, v. 230, p. 213–246, doi:http://dx.doi.org/10.1130/SPE230-p213
    OpenUrlCrossRef
  59. ↵
    1. Horton J. J. Jr..,
    2. Berquist C. J.,
    3. Marr J. J.,
    4. Druhan R. M.,
    5. Sacks P. E.,
    6. Butler J. R.
    , 1993, The Lake Gordon mylonite zone; a link between the Nutbush Creek and Hylas zones of the eastern Piedmont fault system: Geological Society of America Abstracts with Programs, v. 25, n. 4, p. 23.
    OpenUrl
  60. ↵
    1. Horton J. J. Jr..,
    2. Aleinikoff J. N.,
    3. Burton W. C.
    , 1995, Mesoproterozoic and Neoproterozoic terranes in the eastern Piedmont of Virginia, implications of coordinated field studies and U/Pb geochronology: Geological Society of America Abstracts with Programs, v. 27, n. 6, p. 397.
    OpenUrl
    1. Horton J. W. Jr..,
    2. Aleinikoff J. N.,
    3. Burton W. C.,
    4. Peper J. D.,
    5. Hackley P. C.
    , 1999, Geologic framework of the Carolina slate belt in southern Virginia; insights from geologic mapping and U/Pb geochronology: Abstracts with Programs, Geological Society of America, v. 31, p. 476.
    OpenUrl
  61. ↵
    1. Horton J. W. Jr..,
    2. Daniels D. L.,
    3. Powars D. S.
    , 2014, Pre-Cretaceous terranes, basins, and faults beneath the Atlantic Coastal Plain; analysis of subsurface samples and borehole data in relation to magnetic and gravity anomalies: Geological Society of America Abstracts with Programs, v. 46, n. 6, p. 59.
    OpenUrl
    1. Hughes K. S.,
    2. Hibbard J. P.,
    3. Miller B. V.
    , 2013, Relationship between the Ellisville Pluton and Chopawamsic Fault: Establishment of significant Late Ordovician faulting in the Appalachian Piedmont of Virginia: American Journal of Science, v. 313, n. 6, p. 584–612, doi:http://dx.doi.org/10.2475/06.2013.03
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. Janots E.,
    2. Berger A.,
    3. Gnos E.,
    4. Whitehouse M.,
    5. Lewin E.,
    6. Pettke T.
    , 2012, Constraints on fluid evolution during metamorphism from U–Th–Pb systematics in Alpine hydrothermal monazite: Chemical Geology, v. 326–327, p. 61–71, doi:http://dx.doi.org/10.1016/j.chemgeo.2012.07.014
    OpenUrlCrossRef
  63. ↵
    1. Jochum K. P.,
    2. Nohl U.
    , 2008, Reference materials in geochemistry and environmental research and the GeoReM database: Chemical Geology, v. 253, n. 1–2, p. 50–53, doi:http://dx.doi.org/10.1016/j.chemgeo.2008.04.002
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Jochum K. P.,
    2. Weis U.,
    3. Stoll B.,
    4. Kuzmin D.,
    5. Yang Q.,
    6. Raczek I.,
    7. Jacob D. E.,
    8. Stacke A.,
    9. Birbaum K.,
    10. Frick D. A.,
    11. Gunther D.,
    12. Enzweiler J.
    , 2011, Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines: Geostandards and Geoanalytical Research, v. 35, n. 4, p. 397–429, doi:http://dx.doi.org/10.1111/j.1751-908X.2011.00120.x
    OpenUrlCrossRef
  65. ↵
    1. Kearns L. E.
    , 1993, Minerals of the Morefield Pegmatite, Amelia County, Virginia: Rocks and Minerals, v. 68, n. 4, p. 232–242.
    OpenUrlGeoRef
  66. ↵
    1. Kearns L. E.
    1995, Alumino-fluorides from the Morefield Pegmatite, Amelia County, Virginia: Mineralogical Records, v. 26, n. 6, p. 551–556.
    OpenUrl
  67. ↵
    1. Kearns L. E.,
    2. Martin B. S.
    , 2000, The Morefield Pegmatite, Amelia, Virginia; mineral update: Virginia Minerals, v. 46, n. 2, p. 9–13.
    OpenUrlGeoRef
  68. ↵
    1. Kempe U.,
    2. Lehmann B.,
    3. Wolf D.,
    4. Rodionov N.,
    5. Bombach K.,
    6. Schwengfelder U.,
    7. Dietrich A.
    , 2008, U–Pb SHRIMP geochronology of Th–poor, hydrothermal monazite: An example from the Llallauga tin porphyry deposit, Bolivia: Geochimica et Cosmochimica Acta, v. 72, n. 17, p. 4352–4366, doi:http://dx.doi.org/10.1016/j.gca.2008.05.059
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Nance R. D.,
    2. Thompson M. D.
    1. Keppie J. D.,
    2. Dostal J.,
    3. Murphy J. B.,
    4. Nance R. D.
    , 1996, Terrane transfer between eastern Laurentia and western Gondwana in the early Paleozoic: Constraints on global reconstructions, in Nance R. D., Thompson M. D., editors, Avalonian and Peri-Gondwanan terranes of the Circum–North Atlantic: Geological Society of America Special Papers, v. 304, p. 369–380, doi:http://dx.doi.org/10.1130/0-8137-2304-3.369
    OpenUrlCrossRef
  70. ↵
    1. Keppler H.
    , 1993, Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks: Contributions to Mineralogy and Petrology, v. 114, n. 4, p. 479–488. doi:http://dx.doi.org/10.1007/BF00321752
    OpenUrlCrossRefGeoRefWeb of Science
    1. Snoke A. W.
    1. Kish S. A.,
    2. Fullagar P. D.
    , 1978, Summary of geochronological data for late Paleozoic plutons from high grade metamorphic belts of the eastern Piedmont of North Carolina, South Carolina, and Virginia, in Snoke A. W., editor, Geological investigations of the eastern Piedmont, southern Appalachians (with a field trip guide on the bedrock geology of central South Carolina): US Geological Survey, Carolina Geological Survey Guidebook, p. 41–42.
  71. ↵
    1. Koenig G.
    , 1882, Notes on monazite [Virginia]: Proceedings of the Academy of Natural Sciences of Philadelphia, p. 15–16.
  72. ↵
    1. Kohn M. J.,
    2. Vervoort J. D.
    , 2008, U–Th–Pb dating of monazite by single-collector ICP-MS: Pitfalls and potential: Geochemistry, Geophysics, Geosystems, v. 9, n. 4, p. Q04031, doi:http://dx.doi.org/10.1029/2007GC001899
    OpenUrlCrossRef
  73. ↵
    1. Krenn E.,
    2. Finger F.
    , 2010, Unusually Y-rich monazite-(Ce) with 6-14 wt.% Y2O3 in a granulite from the Bohemian Massif: Implications for high temperature monazite growth from the monazite-xenotime miscibility gap thermometry: Mineralogical Magazine, v. 74, n. 2, p. 217–225, doi:http://dx.doi.org/10.1180/minmag.2010.074.2.217
    OpenUrlAbstract/FREE Full Text
    1. Krenn E.,
    2. Putz H. H.,
    3. Finger F. F.,
    4. Paar W. H.
    , 2008b, Unusual monazite with high S, Sr, Eu and common Pb contents in ore bearing mylonites from the Schellgaden mining district, Austria: European Geosciences Union, Geophysical Research Abstracts, v. 10, p. EGU2008-a-11796
    OpenUrl
  74. ↵
    1. Krenn E.,
    2. Ustaszewski K.,
    3. Finger F.
    , 2008a, Detrital and newly formed metamorphic monazite in amphibolite-facies metapelites from the Motajica Massif, Bosnia: Chemical Geology, v. 254, n. 3–4, p. 164–174, doi:http://dx.doi.org/10.1016/j.chemgeo.2008.03.012
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    1. Krenn E.,
    2. Putz H.,
    3. Finger F.,
    4. Paar W. H.
    , 2011, Sulfur-rich monazite with high common Pb in ore-bearing schists from the Schellgaden mining district (Tauern Window, Eastern Alps: Mineralogy and Petrology, v. 102, p. 51–62, doi:http://dx.doi.org/10.1007/s00710-011-0170-x
    OpenUrlCrossRefGeoRefWeb of Science
  76. ↵
    1. Kucha H.
    , 1980, Continuity in the monazite-huttonite series: Mineralogical Magazine, v. 43, p. 1031–1034, doi:http://dx.doi.org/10.1180/minmag.1980.043.332.12
    OpenUrlCrossRefGeoRefWeb of Science
  77. ↵
    1. Kunk M. J.,
    2. Horton J. J.,
    3. Gibson R. L.,
    4. Zack T.,
    5. McAleer R. J.,
    6. Townsend G. N.
    , 2011, Alleghanian thermal history of basement-derived target rocks in the ICDP-USGS Eyreville-B core from the Chesapeake Bay impact structure: Geological Society of America Abstracts with Programs, v. 43, p. 550.
    OpenUrl
  78. ↵
    1. Kylander-Clark A. C.,
    2. Hacker B. R.
    , 2011, Deciphering the evolution of continental crust; insights through laser ablation split-stream (LASS) petrochronology: Mineralogical Magazine, v. 75, p. 1260.
    OpenUrlGeoRef
  79. ↵
    1. Kylander-Clark A. C.,
    2. Hacker B. R.,
    3. Cottle J. M.
    , 2013, Laser ablation split stream ICP petrochronology: Chemical Geology, v. 345, p. 99–112, doi:http://dx.doi.org/10.1016/j.chemgeo.2013.02.019
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Lambert C.,
    2. Groenewald C.,
    3. Macey P.,
    4. Kisters A.,
    5. Frei D.
    , 2013, Melt migration along transcurrent shear zones; case study of the Pofadder shear zone and the Skimmelberg pegmatite stockwork: Colloquium of African Geology Abstracts, v. 24, p. 389.
    OpenUrl
  81. ↵
    1. Laughlin A. W.
    , 1966, Excess radiogenic argon in minerals from the Amelia, Virginia, pegmatites: EOS, Transactions, American Geophysical Union, v. 47, p. 197–198.
    OpenUrlGeoRef
  82. ↵
    1. Laughlin A. W.
    1968, A geochronological-geochemical study of the Rutherford and Morefield pegmatites, Amelia, Virginia: EOS, Transactions, American Geophysical Union, v. 49, 761.
  83. ↵
    1. Laughlin A. W.
    1973, Potassium, rubidium and strontium abundances in minerals of the Rutherford and Morefield pegmatites, Amelia, Virginia: Earth and Planetary Science Letters, v. 17, n. 2, p. 375–379, doi:http://dx.doi.org/10.1016/0012-821X(73)90203-3
    OpenUrlCrossRefGeoRef
  84. ↵
    1. Lemke R. W.,
    2. Jahns R. H.,
    3. Griffitts W. R.
    , 1952, Amelia district, Virginia, Part 2 of Mica deposits of the southeastern Piedmont: United States Geological Survey Professional Paper, v. 248-B, 139p.
    OpenUrl
  85. ↵
    1. Lemke R. W.,
    2. Jahns R. H.,
    3. Griffitts W. R.
    1953, Mica deposits of the southeastern Piedmont, Parts 1-11: United States Geological Survey Professional Paper, v. 248-A, 102 p.
    OpenUrl
  86. ↵
    1. Li N.,
    2. Chen Y.,
    3. Fletcher I. R.,
    4. Zeng Q.
    , 2011, Triassic mineralization with Cretaceous overprint in the Dahu AU–Mo deposit, Xiaoqinling gold province: Constraints from SHRIMP monazite U–Th–Pb geochronology: Gondwana Research, v. 20, n. 2–3, p. 543–552, doi:http://dx.doi.org/10.1016/j.gr.2010.12.013
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Lobato L. M.,
    2. Santos J. O. S.,
    3. McNaughton N. J.,
    4. Fletcher I. R.,
    5. Noce C. M.
    , 2007, U–Pb SHRIMP monazite ages of the giant Morro Velho and Cuiabá gold deposits, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Minas Gerais, Brazil: Ore Geology Reviews, v. 32, n. 3–4, p. 674–680, doi:http://dx.doi.org/10.1016/j.oregeorev.2006.11.007
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. London D.
    , 2005, Granitic pegmatites: An assessment of current concepts and directions for the future: Lithos, v. 80, n. 1–4, p. 281–303, doi:http://dx.doi.org/10.1016/j.lithos.2004.02.009
    OpenUrlCrossRefGeoRefWeb of Science
  89. ↵
    1. Longerich H. P.,
    2. Jackson S. E.,
    3. Günther D.
    , 1996, Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation: Journal of Analytical Atomic Spectroscopy, v. 11, p. 899–904, doi:http://dx.doi.org/10.1039/JA9961100899
    OpenUrlCrossRef
  90. ↵
    1. Lumpkin G. R.
    , 1998, Rare-element mineralogy and internal evolution of the Rutherford #2 Pegmatite, Amelia County, Virginia: A classic locality revisited: Canadian Mineralogist, v. 36, n. 2, p. 339–353.
    OpenUrl
  91. ↵
    1. Lupulescu M. V.,
    2. Chiarenzelli J. R.,
    3. Pullen A. T.,
    4. Price J. D.
    , 2011, Using pegmatite geochronology to constrain temporal events in the Adirondack Mountains: Geosphere, v. 7, n. 1, p. 23–39, doi:http://dx.doi.org/10.1130/GES00596.1
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Lutz R. D.,
    2. Venkatakrishnan R.
    , 1985, Lineaments in Richmond Triassic basin area, Virginia: A kinematic model: American Association of Petroleum Geologists Bulletin, v. 69, p. 1440.
    OpenUrlGeoRef
  93. ↵
    1. Mahan K. H.,
    2. Williams M. L.,
    3. Flowers R. M.,
    4. Jercinovic M. J.,
    5. Baldwin J. A.,
    6. Bowring S. A.
    , 2006, Geochronological constraints on the Legs Lake shear zone with implications for regional exhumation of lower continental crust, western Churchill Province, Canadian Shield: Contributions to Mineralogy and Petrology, v. 152, n. 2, p. 223–242, doi:http://dx.doi.org/10.1007/s00410-006-0106-3
    OpenUrlCrossRefGeoRefWeb of Science
  94. ↵
    1. Martin A. J.,
    2. Owens B. E.
    , 2012, Implications of c. 550 Ma crystallization of the Sabot amphibolite protolith in the Goochland Terrane of the central Virginia Piedmont: Geological Society of America Abstracts with Programs, v. 44, n. 7, p. 172.
    OpenUrl
  95. ↵
    1. Martin A. J.,
    2. Gehrels G. E.,
    3. DeCelles P. G.
    , 2007, The tectonic significance of (U,Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal: Chemical Geology, v. 244, n. 1–2, p. 1–24, doi:http://dx.doi.org/10.1016/j.chemgeo.2007.05.003
    OpenUrlCrossRefGeoRefWeb of Science
  96. ↵
    1. Masuda A.,
    2. Nakai S.
    , 1983, An examination of geochronological utility of electron capture decay of La-138: Geochemical Journal, v. 17, n. 6, p. 313–314, doi:http://dx.doi.org/10.2343/geochemj.17.313
    OpenUrlCrossRefGeoRef
  97. ↵
    1. McCauley A.,
    2. Bradley D. C.
    , 2014, The global age distribution of granitic pegmatites: Canadian Mineralogist, v. 52, n. 2, p. 183–190, doi:http://dx.doi.org/10.3749/canmin.52.2.183
    OpenUrlCrossRef
  98. ↵
    1. McFarlane C. R. M.,
    2. McCulloch M. T.
    , 2007, Coupling of in situ Sm-Nd systematics and U–Pb dating of monazite and allanite with applications to crustal evolution studies: Chemical Geology, v. 245, n. 1–2, p. 45–60, doi:http://dx.doi.org/10.1016/j.chemgeo.2007.07.020
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Michel J.,
    2. Cole K. H.,
    3. Moore W. S.
    , 1982, Uraniferous gorceixite in the South Carolina coastal plain (U.S.A.): Chemical Geology, v. 35, n. 3–4, p. 227–245, doi:http://dx.doi.org/10.1016/0009-2541(82)90003-1
    OpenUrlCrossRefGeoRef
  100. ↵
    1. Milton C.,
    2. Axelrod J. M.,
    3. Carron M. K.,
    4. Stearns MacNeil F.
    , 1958, Gorceixite from Dale County, Alabama: American Mineralogist, v. 43, n. 7–8, p. 688–694.
    OpenUrl
  101. ↵
    1. Montel J.,
    2. Foret S.,
    3. Veschambre M.,
    4. Nicollet C.,
    5. Provost A.
    , 1996, Electron microprobe dating of monazite: Chemical Geology, v. 131, n, 1–4, p. 37–53, doi:http://dx.doi.org/10.1016/0009-2541(96)00024-1
    OpenUrlCrossRefGeoRefWeb of Science
  102. ↵
    1. Montel J.,
    2. Devidal J.,
    3. Avignant D.
    , 2002, X-ray diffraction study of brabantite-monazite solid solutions: Chemical Geology, v. 191, n. 1–3, p. 89–104, doi:http://dx.doi.org/10.1016/S0009-2541(02)00150-X
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    1. Morelli R. M.,
    2. Bell C. C.,
    3. Creaser R. A.,
    4. Simonetti A.
    , 2010, Constraints on the genesis of gold mineralization at the Homestake Gold Deposit, Black Hills, South Dakota, from rhenium-osmium sulfide geochronology: Mineralium Deposita, v. 45, n. 5, p. 461–480, doi:http://dx.doi.org/10.1007/s00126-010-0284-9
    OpenUrlCrossRefGeoRefWeb of Science
    1. Mose D. G.,
    2. Nagel M. S.
    , 1982, Plutonic events in the Piedmont of Virginia: Southeastern Geology, v. 23, n. 1, p. 25–39
    OpenUrlGeoRef
  104. ↵
    1. Murata K. J.,
    2. Rose H. J. Jr..,
    3. Carron M. K.
    , 1953, Systematic variation of rare earths in monazite: Geochimica et Cosmochimica Acta, v. 4, n. 6, p. 292–300, doi:http://dx.doi.org/10.1016/0016-7037(53)90058-1
    OpenUrlCrossRefGeoRef
  105. ↵
    1. Murphy J. B.,
    2. Anderson A. J.,
    3. Archibald D. A.
    , 1998, Postorogenic alkali feldspar granite and associated pegmatites in West Avalonia: The petrology of the Neoproterozoic Georgeville Pluton, Antigonish Highlands, Nova Scotia: Canadian Journal of Earth Sciences, v. 35, n. 2, p. 110–120, doi:http://dx.doi.org/10.1139/e97-099
    OpenUrlAbstract
  106. ↵
    1. Nakai S. S.,
    2. Shimizu H. H.,
    3. Masuda A. A.
    , 1986, A new geochronometer using lanthanum-138: Nature, v. 320, p. 433–435., doi:http://dx.doi.org/10.1038/320433a0
    OpenUrlCrossRefGeoRef
  107. ↵
    1. Neuschel S. K.
    , 1970, Correlation of aeromagnetics and aeroradioactivity with lithology in the Spotsylvania area, Virginia: Geological Society of America Bulletin, v. 81, n. 12, p. 3575–3582, doi:http://dx.doi.org/10.1130/0016-7606(1970)81[3575:COAAAW]2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  108. ↵
    1. Neymark L. A.,
    2. Premo W. R.,
    3. Mel'nikov N. N.,
    4. Emsbo P.
    , 2014, Precise determination of δ88Sr in rocks, minerals, and waters by double-spike TIMS: A powerful tool in the study of geological, hydrological and biological processes: Journal of Analytical Atomic Spectrometry, v. 29, n. 1, p. 65–75, doi:http://dx.doi.org/10.1039/C3JA50310K
    OpenUrlCrossRef
  109. ↵
    1. Ni Y.,
    2. Hughes J. M.,
    3. Mariano A. N.
    , 1995, Crystal chemistry of the monazite and xenotime structures: American Mineralogist, v. 80, n. 1–2, p. 21–26, doi:http://dx.doi.org/10.2138/am-1995-1-203
    OpenUrlAbstract
  110. ↵
    1. Okunlola O.
    , 2013, Tectono-structural framework for metallic mineralization in the basement complex of Nigeria: Colloquium of African Geology Abstracts, 24, 172.
    OpenUrl
  111. ↵
    1. Owens B. E.,
    2. Buchwaldt R.,
    3. Shirvell C. R.
    , 2010, Geochemical and geochronological evidence for Devonian magmatism revealed in the Maidens Gneiss, Goochland Terrane, Virginia: Geological Society of America, Memoirs, v. 206, p. 725–738, doi:http://dx.doi.org/10.1130/2010.1206(28)
    OpenUrlAbstract/FREE Full Text
  112. ↵
    1. Owens B. E.,
    2. Buchwaldt R.,
    3. Hancox C. N.
    , 2015, Further evidence for Devonian magmatism revealed in the Maidens Gneiss, Goochland Terrane, Virginia: Geological Society of America Abstracts with Programs, Paper No. 131–12.
  113. ↵
    1. Papoutsa A. D.,
    2. Pe-Piper G.
    , 2013, The relationship between REE-Y-Nb-Th minerals and the evolution of an A-type granite, Wentworth Pluton, Nova Scotia: American Mineralogist, v. 98, n. 2–3, p. 444–462, doi:http://dx.doi.org/10.2138/am.2013.3972
    OpenUrlAbstract/FREE Full Text
  114. ↵
    1. Parrish R. R.
    , 1990, U–Pb dating of monazite and its application to geological problems: Canadian Journal of Earth Sciences, v. 27, n. 11, p. 1431–1450, doi:http://dx.doi.org/10.1139/e90-152
    OpenUrlAbstract
    1. Pavlides L.,
    2. Stern T. W.,
    3. Arth J. G.,
    4. Muth K. G.,
    5. Newell M. F.
    , 1982, Middle and upper Paleozoic granitic rocks in the Piedmont near Fredericksburg, Virginia; geochronology: United States Geological Survey Professional Paper, p. B1–B9.
  115. ↵
    1. Pavlides L.,
    2. Arth J. G.,
    3. Sutter J. F.,
    4. Stern T. W.,
    5. Cortesini H.
    , 1994, Early Paleozoic alkalic and calc-alalkalic plutonism and associated contact metamorphism, central Virginia piedmont: United States Geological Survey Professional Paper, v. 1529, 147 p.
    OpenUrl
  116. ↵
    1. Pegau A.
    , 1932, Pegmatite deposits of Virginia: Bulletin of the Virginia Geological Survey, 123 p.
  117. ↵
    1. Penfield S. L.
    , 1882, On the occurrence and composition of some American varieties of monazite: American Journal of Science, Series 3, v. 24, n. 142, p. 250–254, doi:http://dx.doi.org/10.2475/ajs.s3-24.142.250
    OpenUrlCrossRef
  118. ↵
    1. Peterman E. M.,
    2. Hacker B. R.,
    3. Grove M.,
    4. Gehrels G. E.,
    5. Mattinson J. M.
    , 2006, A multimethod approach to improving monazite geochronology: Eos, Transactions American Geophysical Union, Fall Meeting 2006, abstract #V21A-0551, 2006AGUFM.V21A0551P
  119. ↵
    1. Peterman E. M.,
    2. Mattinson J. M.,
    3. Hacker B. R.
    , 2012, Multi-step TIMS and CA-TIMS monazite U/Pb geochronology: Chemical Geology, v. 312–313, p. 58–73, doi:http://dx.doi.org/10.1016/j.chemgeo.2012.04.006
    OpenUrlCrossRef
  120. ↵
    1. Petrik I.,
    2. Kubis M.,
    3. Konecny P.,
    4. Broska I.,
    5. Malachovsky P.
    , 2011, Rare phosphates from the Surovec topaz-Li-mica microgranite, Gemeric Unit, Western Carpathians, Slovak Republic: Role of F/H2O of the melt: Canadian Mineralogist, v. 49, n. 2, p. 521–540, doi:http://dx.doi.org/10.3749/canmin.49.2.521
    OpenUrlCrossRef
  121. ↵
    1. Pulver M. H.,
    2. Coleman M. E.,
    3. Byrne T.,
    4. Wintsch R. P.,
    5. Kunk M. J.,
    6. Boyd J. L.,
    7. Dunnigan J.
    , 1997, Structure and chronology of a section of the Bronson Hill Terrane; significance for late Paleozoic to early Mesozoic exhumation in south-central New England: Geological Society of America Abstracts with Programs, v. 29, p. 231.
    OpenUrl
  122. ↵
    1. Qureshi R. H.,
    2. Jenkins D. A.,
    3. Davies R. I.,
    4. Rees J. A.
    , 1969, Application of microprobe analysis to the study of phosphorus in soils: Nature, v. 221, p. 1142–1143, doi:http://dx.doi.org/10.1038/2211142a0
    OpenUrlCrossRefGeoRef
  123. ↵
    1. Hatcher R. D. Jr..,
    2. Thomas W. A.,
    3. Viele G. W.
    1. Rankin D. W.,
    2. Drake A. A. Jr..,
    3. Glover L. III.,
    4. Goldsmith R.,
    5. Hall L. M.,
    6. Murray D. P.,
    7. Ratcliffe N. M.,
    8. Read J. F.,
    9. Secor D. T. Jr..,
    10. Stanley R. S.
    , 1989, Pre-orogenic terranes, in Hatcher R. D. Jr.., Thomas W. A., Viele G. W., editors, The Appalachian-Ouachita orogen in the United States: Boulder, Colorado, Geological Society of America, The Geology of North America, v. F-2, p. 7–100, doi:http://dx.doi.org/10.1130/DNAG-GNA-F2.7
    OpenUrlCrossRef
  124. ↵
    1. Rasmussen B.
    , 1996, Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones: A major sink for oceanic phosphorus: American Journal of Science, v. 296, n. 6, p. 601–632, doi:http://dx.doi.org/10.2475/ajs.296.6.601
    OpenUrlAbstract/FREE Full Text
  125. ↵
    1. Reno B. L.,
    2. Piccoli P. M.,
    3. Brown M.,
    4. Trouw R. A. J.
    , 2012, In situ monazite (U-Th)-Pb ages from the Southern Brasılia Belt, Brazil: Constraints on the high temperature retrograde evolution of HP granulites: Journal of Metamorphic Geology, v. 30, n. 1, p. 81–112, doi:http://dx.doi.org/10.1111/j.1525-1314.2011.00957.x
    OpenUrlCrossRefGeoRefWeb of Science
  126. ↵
    1. Robinson P.,
    2. Tucker R. D.,
    3. Berry H. N.,
    4. Peterson V. L.,
    5. Thompson P. J.
    , 2007, U-Pb geochronology of Late Devonian through Late Pennsylvanian deformation and high-grade metamorphism in central Massachusetts and adjacent New Hampshire, with speculations about broader tectonic settings: Geological Society of America Abstracts with Programs, v. 39, p. 68.
    OpenUrl
  127. ↵
    1. Rojkovic I.,
    2. Konecny P.,
    3. Novotny L.,
    4. Puskelova L.,
    5. Stresko V.
    , 1999, Quartz-apatite-REE vein mineralization in early Paleozoic rocks of the Gemeric Superunit, Slovakia: Geologica Carpathica, v. 50, p. 215–227.
    OpenUrl
  128. ↵
    1. Rollinson G. K.,
    2. Pirrie D. D.,
    3. Power M. R.,
    4. Cundy A. A.,
    5. Camm G. S.
    , 2007, Geochemical and mineralogical record of historical mining, Hayle Estuary, Cornwall, United Kingdom: Proceedings of the Ussher Society, v. 11, p. 326–337.
    OpenUrlGeoRef
  129. ↵
    1. Saks P. E.
    1. Sacks P. E.
    , 1999, Geologic Overview of the Eastern Appalachian Piedmont along Lake Gaston, North Carolina and Virginia, in Saks P. E., editor, Geology of the Fall Zone Region along the North Carolina – Virginia State Line: Guidebook for the 1999 Meeting of the Carolina Geological Society, Emporia, Virginia, p. 1–15.
  130. ↵
    1. Sallet R.,
    2. Price J. D.,
    3. Babinski M.,
    4. Moritz R.,
    5. Souza Z. S.,
    6. Chiaradia M.
    , 2015, Experimental anatexis, fluorine geochemistry and lead-isotope constraints on granite petrogenesis in the Seridó Belt, Borborema Province, northeastern Brazil: Chemical Geology, v. 400, p. 122–148, doi:http://dx.doi.org/10.1016/j.chemgeo.2015.02.011
    OpenUrlCrossRefGeoRef
  131. ↵
    1. Seydoux-Guillaume A.,
    2. Paquette J.,
    3. Wiedenbeck M.,
    4. Montel J.,
    5. Heinrich W.
    , 2002, Experimental resetting of the U-Th-Pb systems in monazite: Chemical Geology, v. 191, n. 1–3, p. 165–181, doi:http://dx.doi.org/10.1016/S0009-2541(02)00155-9
    OpenUrlCrossRefGeoRefWeb of Science
  132. ↵
    1. Seydoux-Guillaume A.,
    2. Montel J.,
    3. Bingen B.,
    4. Bosse V.,
    5. de Parseval P.,
    6. Paquette J.,
    7. Janots E.,
    8. Wirth R.
    , 2012, Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers: Chemical Geology, v. 330–331, p. 140–158, doi:http://dx.doi.org/10.1016/j.chemgeo.2012.07.031
    OpenUrlCrossRef
  133. ↵
    1. Shannon R. D.
    , 1976, Systematic studies of interatomic distances in oxides: London, John Wiley and Sons, p. 403–431.
  134. ↵
    1. Sheard E. R.,
    2. Williams-Jones A. E.,
    3. Heiligmann M.,
    4. Pederson C.,
    5. Trueman D. L.
    , 2012, Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada: Economic Geology, v. 107, n. 1, p. 81–104, doi:http://dx.doi.org/10.2113/econgeo.107.1.81
    OpenUrlAbstract/FREE Full Text
    1. Sinha A. K.,
    2. Thomas W. A.,
    3. Hatcher R. D. Jr..,
    4. Harrison T. M.
    , 2012, Geodynamic evolution of the central Appalachian Orogen: Geochronology and compositional diversity of the magmatism from Ordovician through Devonian: American Journal of Science, v. 312, n. 8, p. 907–966, doi:http://dx.doi.org/10.2475/08.2012.03
    OpenUrlAbstract/FREE Full Text
  135. ↵
    1. Sinkankas J.
    , 1968, Classical mineral occurrences: I. Geology and mineralogy of the Rutherford pegmatites, Amelia, Virginia: American Mineralogist, v. 53, n. 3–4, p. 373–405.
    OpenUrl
  136. ↵
    1. Smerekanicz J. R.,
    2. Dudas F. O.
    , 1999, Reconnaissance fluid inclusion study of the Morefield Pegmatite, Amelia County, Virginia: American Mineralogist, v. 84, n. 5–6, p. 746–753, doi:http://dx.doi.org/10.2138/am-1999-5-606
    OpenUrlAbstract/FREE Full Text
  137. ↵
    1. Spear F. S.,
    2. Pyle J. M.
    , 2010, Theoretical modeling of monazite growth in a low Ca metapelite: Chemical Geology, v. 273, n. 1–2, p. 111–119, doi:http://dx.doi.org/10.1016/j.chemgeo.2010.02.016
    OpenUrlCrossRefGeoRefWeb of Science
  138. ↵
    1. Spears D. B.,
    2. Owens B. E.,
    3. Bailey C. M.
    , 2004, The Goochland-Chopawamsic Terrane boundary, central Virginia Piedmont: United States Geological Survey Circular 1264, p. 223–245, doi:http://pubs.usgs.gov/circ/2004/1264/html/trip7/index.html
    OpenUrlCrossRef
  139. ↵
    1. Staatz M. H.,
    2. Sharp B. J.,
    3. Hetland D. L.
    , 1979, Geology and mineral resources of the Lemhi Pass thorium district, Idaho and Montana: United States Geological Survey Professional Paper, v. 1049–A, p. 1–90, doi:http://pubs.er.usgs.gov/publication/pp1049A
    OpenUrlCrossRef
  140. ↵
    1. Stevens L. M.,
    2. Baldwin J. A.
    , 2013, Phase equilibria, garnet REE geochemistry, and LASS petrochronology; constraints on the P-T-t history of the Priest River Complex, northern Idaho: Geological Society of America Abstracts with Programs, v. 45, n. 7, p. 880.
    OpenUrl
  141. ↵
    1. Sun S-s.,
    2. McDonough W. F.
    , 1989, Chemical and isotopic systematic of ocean basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, p. 313–345, doi:http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19
    OpenUrlAbstract/FREE Full Text
  142. ↵
    1. Suzuki K.,
    2. Adachi M.,
    3. Kajizuka I.
    , 1994, Th, U and Pb analytical data of monazites used in the paper, electron microprobe observations of Pb diffusion in metamorphosed detrital monazite. Journal of Earth Planetary Sciences, Nagoya University, v. 41, p. 75–81.
    OpenUrl
  143. ↵
    1. Sweatman T. R.
    , ms, 1961, The mineralogy and chemistry of the phosphate minerals in some soils: Adelaide, Australia, University of Adelaide, M.S. thesis, Australia, 133 p.
  144. ↵
    1. Taber S.
    , 1913, Geology of the gold belt in the James River basin, Virginia: Virginia Geological Survey Bulletin, 847 p.
  145. ↵
    1. Taylor M.,
    2. Smith R. W.,
    3. Ahler B. A.
    , 1984, Gorceixite in topaz greisen assemblages Silver mine area, Missouri: American Mineralogist, v. 69, n, 9–10, p. 984–986.
    OpenUrlAbstract
  146. ↵
    1. Tilton G. R.,
    2. Nicolaysen L. O.
    , 1957, The use of monazites for age determination: Geochimica et Cosmochimica Acta, v. 11, n. 1–2, p. 28–40, doi:http://dx.doi.org/10.1016/0016-7037(57)90003-0
    OpenUrlCrossRefGeoRefWeb of Science
  147. ↵
    1. Triantafyllidis S.,
    2. Pe-Piper G.,
    3. MacKay R.,
    4. Piper D. J. W.,
    5. Strathdee G.
    , 2010, Monazite as a provenance indicator for the Lower Cretaceous reservoir sandstones, Scotian Basin: Geological Survey of Canada Open File, v. 6732, 452 p., doi:http://dx.doi.org/10.4095/287317
    OpenUrlCrossRef
  148. ↵
    1. Tropper P.,
    2. Manning C. E.,
    3. Harlov D. E.
    , 2013, Experimental determination of CePO4 and YPO4 solubilities in H2O-NaF at 800 °C and 1 Gpa: Implications for rare earth element transport in high-grade metamorphic fluids: Geofluids, v. 13, n. 3, p. 372–380, doi:http://dx.doi.org/10.1111/gfl.12031
    OpenUrlCrossRef
  149. ↵
    1. Upadhyay D.,
    2. Pruseth K. L.
    , 2012, Fluid-induced dissolution breakdown of monazite from Tso Morari Complex, NW Himalayas: Evidence for immobility of trace elements: Contributions to Mineralogy and Petrology, v. 164, n. 2, p. 303–316, doi:http://dx.doi.org/10.1007/s00410-012-0739-3
    OpenUrlCrossRefGeoRefWeb of Science
  150. ↵
    1. van Hees E. H.,
    2. Sirbescu M-L.C.,
    3. Shelton K. L.,
    4. Pressacco R.
    , 2002, Supergene phosphate enrichment in carbonatite-derived eluvial sediments; Agrium phosphate mine, Kapuskasing, Ontario, Canada: Geological Society of America Abstracts with Programs, v. 34, p. 312.
    OpenUrl
  151. ↵
    1. Venkatakrishnan R.
    , 1987, Mesozoic brittle reactivation of the Hylas fault zone; developmental model for the Richmond Basin, Virginia: Geological Society of America Abstracts with Programs, v. 19, n. 2, p. 134.
    OpenUrl
  152. ↵
    1. Venkatakrishnan R.,
    2. Watkins A.
    , 1988, Mesoscopic analysis of brittle deformation zones and fault rocks; Mesozoic extensional reactivation of the late Paleozoic Hylas fault zone, Virginia: Proceedings of the International Conference on Basement Tectonics, p. 834.
  153. ↵
    1. Viana R. R.,
    2. Mänttäri I.,
    3. Kunst H.,
    4. Jordt-Evangelista H.
    , 2003, Age of pegmatites from eastern Brazil and implications of mica intergrowths on cooling rates and age calculations: Journal of South American Earth Sciences, v. 16, n. 6, p. 493–501, doi:http://dx.doi.org/10.1016/S0895-9811(03)00105-6
    OpenUrlCrossRefGeoRefWeb of Science
  154. ↵
    Virginia Department of Mines Report (VDMR), 2003, Digital Representation of the 1993 Geologic Map of Virginia, Virginia Department of Mines, Minerals, and Energy Publication 174, Model Number: 1352.
  155. ↵
    1. Walsh G. J.,
    2. Aleinikoff J. N.,
    3. Wintsch R. P.
    , 2007a, Origin of the Lyme Dome and implications for the timing of multiple Alleghanian deformational and intrusive events in southern Connecticut: American Journal of Science, v. 307, n. 1, p. 168–215, doi:http://dx.doi.org/10.2475/06.2007.06
    OpenUrlAbstract/FREE Full Text
  156. ↵
    1. Walsh G. J.,
    2. Aleinikoff J. N.,
    3. Wintsch R. P.
    , 2007b, Timing of Alleghanian orogenesis and dome formation in southern Connecticut. Geological Society of America Abstracts with Programs, v. 39, p. 80.
    OpenUrl
  157. ↵
    1. Watt G. R.
    , 1995, High-thorium monazite-(Ce) formed during disequilibrium melting of metapelites under granulite-facies conditions: Mineralogical Magazine, v. 59, p. 735–743, doi:http://dx.doi.org/10.1180/minmag.1995.059.397.14
    OpenUrlAbstract
  158. ↵
    1. Wawrzenitz N.,
    2. Krohe A.,
    3. Rhede D.,
    4. Romer R. L.
    , 2012, Dating rock deformation with monazite: The impact of dissolution precipitation creep: Lithos, v. 134–135, p. 52–74, doi:http://dx.doi.org/10.1016/j.lithos.2011.11.025
    OpenUrlCrossRef
  159. ↵
    1. Weems R. E.
    , ms, 1974, Geology of the Hanover Academy and Ashland quadrangles, Virginia: Blacksburg, Virginia, Virginia Polytechnic Institute and State University, Blacksburg, M. S. Thesis, 100 p
    1. Wilson J. R.
    , ms, 2001, U/Pb Ages of plutons from the Central Appalachians and GIS-based assessment of plutons with comments on their regional tectonic significance: Blacksburg, Virginia, Virginia Polytechnic Institute and State University, M.S. Thesis, 109 p.
  160. ↵
    1. Wortman G. L.,
    2. Samson S. D.,
    3. Hibbard J. P.
    , 1998, Precise timing constraints on the kinematic development of the Hyco shear zone: Implications for the central Piedmont shear zone, Southern Appalachian Orogen: American Journal of Science, v. 298, n. 2, p. 108–130, doi:http://dx.doi.org/10.2475/ajs.298.2.108
    OpenUrlAbstract/FREE Full Text
  161. ↵
    1. Wright J. E.,
    2. Sinha A. K.,
    3. Glover L. III.
    , 1975, Age of zircons from the Petersburg Granite, Virginia: With comments on belts of plutons in the Piedmont: American Journal of Science, v. 275, n. 7, p. 848–856, doi:http://dx.doi.org/10.2475/ajs.275.7.848
    OpenUrlAbstract/FREE Full Text
  162. ↵
    1. Xu P.,
    2. Guan H.,
    3. Sun M.,
    4. Malps J.
    , 2000, Methodology of trace element in situ analyses using laser ablation inductively coupled plasma mass spectrometry: Acta Petrologica Sinica, v. 16, p. 291–304.
    OpenUrlGeoRef
    1. Young E.,
    2. Myers A.,
    3. Munson E.,
    4. Conklin N.
    , 1969, Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango, Mexico: US Geological Survey Professional Paper, v. 650D, p. D84–D93.
    OpenUrl
  163. ↵
    1. Zhou X.,
    2. Zhao G.,
    3. Wei C.,
    4. Geng Y.,
    5. Sun M.
    , 2008, EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei Massif of the North China Craton: American Journal of Science, v. 308, n. 3, p. 328–350, doi:http://dx.doi.org/10.2475/03.2008.06
    OpenUrlAbstract/FREE Full Text
  164. ↵
    1. Zhu X. K.,
    2. O'Nions R. K.
    , 1999, Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: A case study from the Lewisian terrain: Earth and Planetary Science Letters, v. 171, n. 2, p. 209–220, doi:http://dx.doi.org/10.1016/S0012-821X(99)00146-6
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 316 (5)
American Journal of Science
Vol. 316, Issue 5
1 May 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ion microprobe 232Th-208Pb ages from high common Pb monazite, Morefield Mine, Amelia County, Virginia: Implications for Alleghanian tectonics
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Ion microprobe 232Th-208Pb ages from high common Pb monazite, Morefield Mine, Amelia County, Virginia: Implications for Alleghanian tectonics
Elizabeth J. Catlos, Nathan R. Miller
American Journal of Science May 2016, 316 (5) 470-503; DOI: 10.2475/05.2016.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Ion microprobe 232Th-208Pb ages from high common Pb monazite, Morefield Mine, Amelia County, Virginia: Implications for Alleghanian tectonics
Elizabeth J. Catlos, Nathan R. Miller
American Journal of Science May 2016, 316 (5) 470-503; DOI: 10.2475/05.2016.03
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL BACKGROUND
    • METHODS
    • RESULTS
    • DISCUSSION AND CONCLUSIONS
    • SUPPLEMENTARY DATA
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • monazite
  • geochronology
  • Amelia monazite
  • Morefield Mine pegmatite
  • Appalachians Piedmont

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire