Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change

Susan M. Rimmer, Sarah J. Hawkins, Andrew C. Scott and Walter L. Cressler
American Journal of Science October 2015, 315 (8) 713-733; DOI: https://doi.org/10.2475/08.2015.01
Susan M. Rimmer
* Department of Geology, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: srimmer@siu.edu
Sarah J. Hawkins
** U.S. Geological Survey, Denver, Colorado 80225, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew C. Scott
*** Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Walter L. Cressler III
§ West Chester University, West Chester, Pennsylvania 19383, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Abu Hamad A. M. B.,
    2. Jasper A.,
    3. Uhl D.
    , 2012, The record of Triassic charcoal and other evidence for palaeowildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel?: International Journal of Coal Geology, v. 96–97, p. 60–71, doi:http://dx.doi.org/10.1016/j.coal.2012.03.006
    OpenUrlCrossRef
  2. ↵
    1. Algeo T. J.,
    2. Berner R. A.,
    3. Maynard J. B.,
    4. Scheckler S. E.
    , 1995, Late Devonian oceanic anoxic events and biotic crises: “Rooted” in the evolution of vascular land plants?: GSA Today, v. 5, n. 3, p. 64–66.
    OpenUrl
  3. ↵
    1. Gensel P. G.,
    2. Edwards D.
    1. Algeo T. J.,
    2. Scheckler S. E.,
    3. Maynard J. B.
    , 2001, Effects of the Middle to Late Devonian spread of vascular land plants on weathering regimes, marine biotas, and global climate, in Gensel P. G., Edwards D., editors, Plants invade the land: Evolutionary and environmental perspectives: New York, Columbia University Press, p. 213–236.
  4. ↵
    1. Behrensmeyer K.,
    2. Damuth J. D.,
    3. DiMichele W. A.,
    4. Potts R.,
    5. Sues H.-D.,
    6. Wing S. L.
    1. Beerbower R.,
    2. Boy J. A.,
    3. DiMichele W. A.,
    4. Gastaldo R. A.,
    5. Hook R.,
    6. Hotton N. III.,
    7. Phillips T. L.,
    8. Scheckler S. E.,
    9. Sear W. A.
    , 1992, Paleozoic terrestrial ecosystems compiled by W. A. DiMichele and R. Hook, in Behrensmeyer K., Damuth J. D., DiMichele W. A., Potts R., Sues H.-D., Wing S. L., editors, Terrestrial Ecosystems Through Time: Chicago, Illinois, University of Chicago Press, p. 205–325.
  5. ↵
    1. Belcher C. M.,
    2. McElwain J. C.
    , 2008, Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic: Science, v. 321, n. 5893, p. 1197–1200, doi:http://dx.doi.org/10.1126/science.1160978
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Belcher C. M.,
    2. Mander L.,
    3. Rein G.,
    4. Jervis F. X.,
    5. Haworth M.,
    6. Hesselbo S. P.,
    7. Glasspool I. J.,
    8. McElwain J. C.
    , 2010, Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change: Nature Geoscience, v. 3, p. 426–429, doi:http://dx.doi.org/10.1038/ngeo871
    OpenUrlCrossRef
  7. ↵
    1. Belcher C. M.
    1. Belcher C. M.,
    2. Collinson M. E.,
    3. Scott A. C.
    , 2013, A 450-million-year history of fire, in Belcher C. M., editor, Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science: Chichester, United Kingdom, John Wiley and Sons, p. 229–249, doi:http://dx.doi.org/10.1002/9781118529539.ch12
    OpenUrlCrossRef
  8. ↵
    1. Berner R. A.
    , 2006, GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2: Geochimica et Cosmochimica Acta, v. 70, n. 23, p. 5653–5664, doi:http://dx.doi.org/10.1016/j.gca.2005.11.032
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Berner R. A.
    , 2009, Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model: American Journal of Science, v. 309, n. 7, p. 603–606, doi:http://dx.doi.org/10.2475/07.2009.03
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Berner R. A.,
    2. Beerling D. J.,
    3. Dudley R.,
    4. Robinson J. M.,
    5. Wildman R. A. Jr..
    , 2003, Phanerozoic atmospheric oxygen: Annual Review of Earth and Planetary Sciences, v. 31, p. 105–134, doi:http://dx.doi.org/10.1146/annurev.earth.31.100901.141329
    OpenUrlCrossRefWeb of Science
  11. ↵
    1. Fielding C. R.,
    2. Frank T. D.,
    3. Isbell J. L.
    1. Blakey R. C.
    , 2008, Gondwana paleogeography from assembly to breakup – A 500 m.y. odyssey, in Fielding C. R., Frank T. D., Isbell J. L., editors, Resolving the Late Paleozoic Ice Age in Time and Space: Geological Society of America Special Paper 441, p. 1–28, doi:http://dx.doi.org/10.1130/2008.2441(01)
    OpenUrlCrossRef
  12. ↵
    1. Bond W. J.,
    2. Keeley J. E.
    , 2005, Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems: Trends in Ecology and Evolution, v. 20, n. 7, p. 387–394, doi:http://dx.doi.org/10.1016/j.tree.2005.04.025
    OpenUrlCrossRefWeb of Science
  13. ↵
    1. Bond W. J.,
    2. Scott A. C.
    2010, Fire and the spread of angiosperms in the Cretaceous: New Phytologist, v. 188, n. 4, p. 1137–1150, doi:http://dx.doi.org/10.1111/j.1469-8137.2010.03418.x
    OpenUrlCrossRefPubMedWeb of Science
  14. ↵
    1. Bowman D. M. J. S.,
    2. Balch J. K.,
    3. Artaxo P.,
    4. Bond W. J.,
    5. Carlson J. M.,
    6. Cochrane M. A.,
    7. D'Antonio C. M.,
    8. DeFries R. S.,
    9. Doyle J. C.,
    10. Harrison S. P.,
    11. Johnston F. H.,
    12. Keeley J. E.,
    13. Krawchuk M. A.,
    14. Kull C. A.,
    15. Marston J. B.,
    16. Moritz M. A.,
    17. Prentice I. C.,
    18. Roos C. I.,
    19. Scott A. C.,
    20. Swetnam T. W.,
    21. van der Werf G. R.,
    22. Pyne S. J.
    , 2009, Fire in the Earth System: Science, v. 324, n. 5926, n. 5926, p. 481–484, doi:http://dx.doi.org/10.1126/science.1163886
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Breger I. A.,
    2. Brown A.
    , 1962, Kerogen in the Chattanooga Shale-Study of its origin and composition suggests why these shales are not source beds for petroleum: Science, v. 137, n. 3525, p. 221–224, doi:http://dx.doi.org/10.1126/science.137.3525.221
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Miknis F. P.,
    2. McKay J. F.
    1. Breger I. A.,
    2. Hatcher P. G.,
    3. Romankiw L. A.,
    4. Miknis F. P.,
    5. Maciel G. E.
    , 1983, Upper Devonian black shales of the eastern United States, organic geochemical studies - past and present, in Miknis F. P., McKay J. F., editors, Geochemistry and Chemistry of Oil Shales: American Chemical Society, ACS Symposium Series 230, p. 181–198.
  17. ↵
    1. Brezinski D. K.,
    2. Cecil C. B.,
    3. Skema V. W.
    , 2011, Late Devonian glacigenic and associated facies from the central Appalachian Basin, eastern United States: Geological Society of America Bulletin, v. 122, n. 1–2, p. 265–281, doi:http://dx.doi.org/10.1130/B26556.1
    OpenUrlCrossRef
  18. ↵
    1. Bustin R. M.,
    2. Guo Y.
    , 1999, Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals: International Journal of Coal Geology, v. 38, n. 3–4, p. 237–260, doi:http://dx.doi.org/10.1016/S0166-5162(98)00025-1
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Calder J. H.,
    2. Mukhopadhyay P. K.,
    3. McGregor D. C.
    , 2003, Devonian source rocks in the Maritimes Basin, Eastern Canada: Geological Society of America, Northeastern Section, 38th Annual Meeting, Abstracts with Programs, v. 35, n. 3, p. 11.
    OpenUrl
  20. ↵
    1. Chaloner W. G.
    , 1989, Fossil charcoal as an indicator of palaeoatmospheric oxygen level: Journal of the Geological Society, London, v. 146, n. 1, p. 171–174, doi:http://dx.doi.org/10.1144/gsjgs.146.1.0171
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Chitaley S.
    , 1982, Preliminary report on some plants from the Cleveland Shale: Kirtlandia, v. 38, p. 89–104.
    OpenUrlGeoRef
  22. ↵
    1. Chitaley S.
    , 1988, The wood Callixylon from the late Devonian of Ohio, U.S.A.: Review of Palaeobotany and Palynology, v. 53, n. 3–4, p. 349–357, doi:http://dx.doi.org/10.1016/0034-6667(88)90039-5
    OpenUrlCrossRefGeoRef
  23. ↵
    1. Chitaley S.,
    2. Cai C.
    , 2001, Permineralized Callixylon woods from the Late Devonian Cleveland Shale of Ohio, U.S.A. and that of Kettle Point, Ontario, Canada: Review of Palaeobotany and Palynology, v. 114, n. 1–2, p. 127–144, doi:http://dx.doi.org/10.1016/S0034-6667(00)00073-7
    OpenUrlCrossRefGeoRef
  24. ↵
    1. Clark J. S.
    , 1988, Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling: Quaternary Research, v. 30, n. 1, p. 67–80, doi:http://dx.doi.org/10.1016/0033-5894(88)90088-9
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Crawford R. L.
    , 1981, Lignin biodegradation and transformation: New York, Wiley, 170 p.
  26. ↵
    1. Cressler W. L. III.
    , 2001, Evidence of earliest known wildfires: Palaios, v. 16, n. 2, p. 171–174, doi:http://dx.doi.org/10.1669/0883-1351(2001)016<0171:EOEKW>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Greb S. F.,
    2. DiMichele W. A.
    1. Cressler W. L. III.
    , 2006, Plant paleoecology of the Late Devonian Red Hill locality, north central Pennsylvania, an Archaeopteris-dominated wetland plant community and early tetrapod site, in Greb S. F., DiMichele W. A., editors, Wetlands through time: Geological Society of America Special Paper 399, p. 79–102, doi:http://dx.doi.org/10.1130/2006.2399(04)
    OpenUrlCrossRef
  28. ↵
    1. Cressler W. L. III.,
    2. Prestianni C.,
    3. LePage B. A.
    , 2010, Late Devonian spermatophyte diversity and paleoecology at Red Hill, north-central Pennsylvania, USA: International Journal of Coal Geology, v. 83, n. 2–3, p. 91–102, doi:http://dx.doi.org/10.1016/j.coal.2009.10.002
    OpenUrlCrossRefGeoRef
  29. ↵
    1. Cross A.,
    2. Hoskins J. H.
    , 1951, Paleobotany of the Devonian-Mississippian black shales: Journal of Paleontology, v. 25, n. 6, p. 713–728, doi:http://www.jstor.org/stable/1299812
    OpenUrlAbstract
  30. ↵
    1. Daniau A-L.
    , 2010, Global patterns of biomass burning during the last glacial period: PAGES News, v. 18, n. 2, p. 61–63.
    OpenUrl
  31. ↵
    1. Krupnick G. A.,
    2. Kress W. J.
    1. DiMichele W. A.,
    2. Bateman R. M.
    , 2005, Evolution of land plant diversity: major innovations and lineages through time, in Krupnick G. A., Kress W. J., editors, Plant Conservation: A Natural History approach: Chicago, Illinois, University of Chicago Press, p. 3–14.
  32. ↵
    1. DiMichele W. A.,
    2. Gastaldo R. A.
    , 2008, Plant paleoecology in deep time: Annals of the Missouri Botanical Gardens, v. 95, n. 1, p. 144–198, doi:http://dx.doi.org/10.3417/2007016
    OpenUrlCrossRefWeb of Science
  33. ↵
    1. Behrensmeyer A. K.,
    2. Damuth J.,
    3. DiMichele W. A.,
    4. Potts R.,
    5. Sues H.-D.,
    6. Wing S. L.
    1. DiMichele W. A.,
    2. Hook R. W.
    , 1992, Paleozoic terrestrial ecosystems, in Behrensmeyer A. K., Damuth J., DiMichele W. A., Potts R., Sues H.-D., Wing S. L., editors, Terrestrial Ecosystems Through Time: Chicago, Illinois, University of Chicago Press, p. 205–325.
  34. ↵
    1. Allmon W. D.,
    2. Bottjer D. J.
    1. DiMichele W. A.,
    2. Stein W. E.,
    3. Bateman R. M.
    , 2001, Ecological sorting during the Paleozoic radiation of vascular plant classes, in Allmon W. D., Bottjer D. J., editors, Evolutionary Paleoecology: New York, Columbia University Press, p. 285–223.
  35. ↵
    1. Driese S. G.,
    2. Mora C. I.
    , 1993, Physico-chemical environment of pedogenic carbonate formation in Devonian vertic paleosols, central Appalachians, USA: Sedimentology, v. 40, n. 2, p. 199–2216, doi:http://dx.doi.org/10.1111/j.1365-3091.1993.tb01761.x
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Edwards D.,
    2. Axe L.
    , 2004, Anatomical evidence in the detection of the earliest wildfires: Palaios, v. 19, n. 2, p. 113–128, doi:http://dx.doi.org/10.1669/0883-1351(2004)019<0113:AEITDO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Gensel P. G.,
    2. Edwards D.
    1. Edwards D.,
    2. Wellman C.
    , 2001, Embryophytes on Land: The Ordovician to Lochkovian (Lower Devonian) record, in Gensel P. G., Edwards D., editors, Plants invade the land: Evolutionary and environmental perspectives: New York, Columbia University Press, p. 3–28.
  38. ↵
    1. Edwards K. J.,
    2. Whittington G.
    , 2000, Multiple charcoal profiles in a Scottish lake: taphonomy, fire ecology, human impact and inference: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 164, n. 1–4, p. 67–86, doi:http://dx.doi.org/10.1016/S0031-0182(00)00176-0
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Woodrow D. L.,
    2. Sevon W. D.
    1. Ettensohn F. R.
    , 1985, Controls on development of Catskill delta complex basin-facies, in Woodrow D. L., Sevon W. D., editors, The Catskill Delta: Geological Society of America Special Paper 201, p. 65–77, doi:http://dx.doi.org/10.1130/SPE201-p65
    OpenUrlCrossRef
  40. ↵
    1. McMillan N. J.,
    2. Embry A. F.,
    3. Glass D. J.
    1. Ettensohn F. R.,
    2. Miller M. L.,
    3. Dillman S. B.,
    4. Elam T. D.,
    5. Geller K. L.,
    6. Swager D. R.,
    7. Markowitz G.,
    8. Woock R. D.,
    9. Barron L. S.
    , 1988, Characterization and implications of the Devonian–Mississippian black shale sequence, eastern and central Kentucky, U.S.A.: Pycnoclines, transgression, regression, and tectonism, in McMillan N. J., Embry A. F., Glass D. J., editors, Devonian of the World, Volume II: Sedimentation: Canadian Society of Petroleum Geologists, Memoir 14, p. 323–345.
    OpenUrl
  41. ↵
    1. Fairon-Demaret M.,
    2. Hartkopf-Fröder C.
    , 2004, Late Famennian plant mesofossils from the Refrath 1 Borehole (Bergisch Gladbach-Paffrath Syncline; Ardennes-Rhenish Massif, Germany: Courier Forschungsinstitut Senkenberg, v. 251, p. 89–121.
    OpenUrl
  42. ↵
    1. Falcon-Lang H. J.
    , 1998, The impact of wildfire on an Early Carboniferous coastal environment, North Mayo, Ireland: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 139, n. 3–4, p. 121–138, doi:http://dx.doi.org/10.1016/S0031-0182(97)00142-9
    OpenUrlCrossRefGeoRef
  43. ↵
    1. Falcon-Lang H. J.
    , 2000, Fire ecology of the Carboniferous tropical zone: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 164, n. 1–4, p. 339–355, doi:http://dx.doi.org/10.1016/S0031-0182(00)00193-0
    OpenUrlCrossRefGeoRef
  44. ↵
    1. Gillespie W. H.,
    2. Rothwell G. W.,
    3. Scheckler S. E.
    , 1981, The earliest seeds: Nature, v. 293, p. 462–464, doi:http://dx.doi.org/10.1038/293462a0
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Glasspool I. J.,
    2. Scott A. C.
    , 2010, Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal: Nature Geoscience, v. 3, p. 627–630, doi:http://dx.doi.org/10.1038/ngeo923
    OpenUrlCrossRef
  46. ↵
    1. Belcher C. M.
    1. Glasspool I. J.,
    2. Scott A. C.
    , 2013, Identifying past fire events, in Belcher C. M., editor, Fire Phenomena in the Earth System: An Interdisciplinary Approach to Fire Science: Chichester, United Kingdom, John Wiley and Sons, p. 179–206.
  47. ↵
    1. Glasspool I. J.,
    2. Edwards D.,
    3. Axe L.
    , 2004, Charcoal in the Silurian as evidence for the earliest wildfire: Geology, v. 32, n. 5, p. 381–383, doi:http://dx.doi.org/10.1130/G20363.1
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Glasspool I. J.,
    2. Edwards D.,
    3. Axe L.
    , 2006, Charcoal in the Early Devonian: A wildfire-derived Konservat-Lagerstatte: Review of Palaeobotany and Palynology, v. 142, n. 3–4, p. 131–136, doi:http://dx.doi.org/10.1016/j.revpalbo.2006.03.021
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Greb S. F.,
    2. DiMichele W. A.
    1. Greb S. F.,
    2. DiMichele W. A.,
    3. Gastaldo R. A.
    , 2006, Evolution and importance of wetlands in earth history, in Greb S. F., DiMichele W. A., editors, Wetlands through time: Geological Society of America Special Paper 399, p. 1–40, doi:http://dx.doi.org/10.1130/2006.2399(01)
    OpenUrlCrossRef
  50. ↵
    1. Goodarzi F.,
    2. Goodbody Q.
    , 1990, Nature and depositional environment of Devonian coals from western Melville Island, Arctic Canada: International Journal of Coal Geology, v. 14, n. 3, p. 175–196, doi:http://dx.doi.org/10.1016/0166-5162(90)90002-G
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Guo Y.,
    2. Bustin R. M.
    , 1998, FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinites in coals: International Journal of Coal Geology, v. 37, n. 1–2, p. 29–53, doi:http://dx.doi.org/10.1016/S0166-5162(98)00019-6
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Hawkins S. J.
    , ms, 2006, Fossil charcoal in Devonian-Mississippian shales: Implications for the expansion of land plants, paleo-atmospheric oxygen levels, and organic-rich black shale accumulation: Lexington, Kentucky, University of Kentucky, M. S. thesis, 151 p.
  53. ↵
    1. Sundquist E. T.,
    2. Broecker W. S.
    1. Herring J. R.
    , 1985, Charcoal fluxes into sediments of the north Pacific Ocean: The Cenozoic record of burning, in Sundquist E. T., Broecker W. S., editors, The carbon cycle and atmospheric CO2: Natural variations Archean to present: Washington D.C., American Geophysical Union, Geophysical Monograph 32, p. 419–442, doi:http://dx.doi.org/10.1029/GM032p0419
    OpenUrlCrossRef
  54. ↵
    1. Gensel P. G.,
    2. Edwards D.
    1. Hotton C. L.,
    2. Heuber F. M.,
    3. Griffing D. H.,
    4. Bridge J. S.
    , 2001, Early terrestrial plant environments: an example from the Emsian of Gaspé, Canada, in Gensel P. G., Edwards D., editors, Plants invade the land. Evolutionary and environmental perspectives: New York, Columbia University Press, p. 179–203.
  55. ↵
    1. Hower J. C.,
    2. O'Keefe J. M. K.,
    3. Watt M. A.,
    4. Pratt T. J.,
    5. Eble C. F.,
    6. Stucker J. D.,
    7. Richardson A. R.,
    8. Kostova I. J.
    2009, Notes on the origin of inertinite macerals in coals: observations on the importance of fungi in the origin of macrinite: International Journal of Coal Geology, v. 80, n. 2, 135–143, doi:http://dx.doi.org/10.1016/j.coal.2009.08.006
    OpenUrlCrossRefWeb of Science
  56. ↵
    1. Hower J. C.,
    2. Misz-Keenan M.,
    3. O'Keefe J. M. K.,
    4. Mastalerz M.,
    5. Eble C. F.,
    6. Garrison T. M.,
    7. Johnston M. N.,
    8. Stucker J. D.
    , 2013, Macrinite forms in Pennsylvanian coals: International Journal of Coal Geology, v. 116–117, p. 172–181, doi:http://dx.doi.org/10.1016/j.coal.2013.07.017
    OpenUrlCrossRef
  57. ↵
    1. Hudspith V. A.,
    2. Belcher C. M.,
    3. Yearsley J. M.
    , 2014, Charring temperatures are driven by fuel types burned in a peatland wildfire: Frontiers in Plant Science, v. 5, p. 1–12, doi:http://dx.doi.org/10.3389/fpls.2014.00714
    OpenUrlCrossRef
  58. ↵
    1. Jaffé R.,
    2. Ding Y.,
    3. Niggemann J.,
    4. Vahatalo A. V.,
    5. Stubbins A.,
    6. Spencer R. G. M.,
    7. Campbell J.,
    8. Dittmar T.
    , 2013, Global Charcoal Mobilization from Soils via Dissolution and Riverine Transport to the Oceans: Science, v. 340, n. 6130, p. 345–347, doi:http://dx.doi.org/10.1126/science.1231476
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Joachimski M. M.,
    2. Ostertag-Henning C.,
    3. Pancost R. D.,
    4. Strauss H.,
    5. Freeman K. H.,
    6. Littke R.,
    7. Sinninghe Damsté J. S.,
    8. Racki G.
    , 2001, Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian-Famennian boundary (Kowala – Holy Cross Mountains/Poland): Chemical Geology, v. 175, n. 1–2, p. 109–131, doi:http://dx.doi.org/10.1016/S0009-2541(00)00365-X
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Jones T. P.,
    2. Chaloner W. G.
    , 1991, Fossil charcoal, its recognition and palaeoatmospheric significance: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 97, n. 1–2, p. 39–50, doi:http://dx.doi.org/10.1016/0031-0182(91)90180-Y
    OpenUrlCrossRef
  61. ↵
    1. Kaiho K.,
    2. Yatsu S.,
    3. Oba M.,
    4. Gorjan P.,
    5. Casier J.-G.,
    6. Ikeda M.
    , 2013, A forest fire and soil erosion event during the Late Devonian mass extinction: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 392, p. 272–280, doi:http://dx.doi.org/10.1016/j.palaeo.2013.09.008
    OpenUrlCrossRefGeoRef
  62. ↵
    1. Kaiser S. I.,
    2. Stueber T.,
    3. Becker R. T.,
    4. Joachimski M. M.
    , 2006, Geochemical evidence for major environmental change at the Devonian–Carboniferous boundary in the Carnic Alps and the Rhenish Massif: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, n. 1–2, p. 146–160, doi:http://dx.doi.org/10.1016/j.palaeo.2006.03.048
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Kenrick P.,
    2. Crane P. R.
    , 1997, The origin and early diversification of land plants: a cladistic survey: Washington and London, Smithsonian Institution Press, 441 p.
  64. ↵
    1. Kump L. R.
    , 1988, Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus: Nature, v. 335, p. 152–154, doi:http://dx.doi.org/10.1038/335152a0
    OpenUrlCrossRefGeoRef
  65. ↵
    1. Lenton T. M.
    , 2001, The role of land plants, phosphorous weathering and fire in the rise and regulation of atmospheric oxygen: Global Change Biology, v. 7, n. 6, p. 613–629, doi:http://dx.doi.org/10.1046/j.1354-1013.2001.00429.x
    OpenUrlCrossRefWeb of Science
  66. ↵
    1. Belcher C. M.
    1. Lenton T. M.
    , 2013, Fire feedbacks on atmospheric oxygen, in Belcher C. M., editor, Fire phenomena and the Earth System: An interdisciplinary guide to fire science: Chichester, New York, John Wiley and Sons, p. 289–308.
  67. ↵
    1. Lenton T. M.,
    2. Watson A. J.
    , 2000, Redfield revisited: 2. What regulates the oxygen content of the atmosphere: Global Biochemical Cycles, v. 14, n. 1, p. 249–268, doi:http://dx.doi.org/10.1029/1999GB900076
    OpenUrlCrossRef
  68. ↵
    1. Mangerud G.,
    2. Rømuld A.
    , 1991, Spathian-Anisian (Triassic) palynology at the Svalis Dome, southwestern Barents Sea: Review of Palaeobotany and Palynology, v. 70, n. 3, p. 199–216, doi:http://dx.doi.org/10.1016/0034-6667(91)90002-K
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Marlon J. R.,
    2. Bartlein P. J.,
    3. Walsh M. K.,
    4. Harrison S. P.,
    5. Brown K. J.,
    6. Edwards M. E.,
    7. Higuera P. E.,
    8. Power M. J.,
    9. Anderson R. S.,
    10. Briles C. E.,
    11. Brunelle A.,
    12. Carcaillet C.,
    13. Daniels M.,
    14. Hu F. S.,
    15. Lavoie M.,
    16. Long C. J.,
    17. Minckley T.,
    18. Richard P. J. H.,
    19. Scott A. C.,
    20. Shafer D. S.,
    21. Tinner W.,
    22. Umbanhowar C. E. Jr..,
    23. Whitlock C.
    , 2009, Wildfire responses to abrupt climate change in North America: Proceedings of the National Academy of Sciences of the United States of America, v. 106, n. 8, p. 2519–2524, doi:http://dx.doi.org/10.1073/pnas.0808212106
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Marynowski L.,
    2. Filipiak P.
    , 2007, Water column euxinia and wildlife evidence during deposition of the Upper Famennian Hangenberg event horizon form the Holy Cross Mountains (central Poland): Geological Magazine, v. 144, n. 3, p. 569–595, doi:http://dx.doi.org/10.1017/S0016756807003317
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Maynard J. B.
    , 1981, Carbon isotopes as indicators of dispersal patterns in Devonian-Mississippian black shales of the Appalachian Basin: Geology, v. 9, n. 6, p. 262–265, doi:http://dx.doi.org/10.1130/0091-7613(1981)9<262:CIAIOD>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. McParland L. C.,
    2. Collinson M. E.,
    3. Scott A. C.,
    4. Steart D. C.,
    5. Grassineau N. V.,
    6. Gibbons S. J.
    , 2007, Ferns and Fires: Experimental Charring of Ferns Compared to Wood and Implications for Paleobiology, Paleoecology, Coal Petrology and Isotope Geochemistry: Palaios, v. 22, n. 5, p. 528–538, doi:http://dx.doi.org/10.2110/palo.2005.p05-138r
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. McParland L. C.,
    2. Collinson M. E.,
    3. Scott A. C.,
    4. Campbell G.
    , 2009, The use of reflectance values for the interpretation of natural and anthropogenic charcoal assemblages: Archaeological and Anthropological Sciences, v. 1, n. 4, p. 249–261, doi:http://dx.doi.org/10.1007/s12520-009-0018-z
    OpenUrlCrossRef
  74. ↵
    1. Meyer-Berthaud B.,
    2. Scheckler S. E.,
    3. Wendt J.
    , 1999, Archaeopteris is the earliest known modern tree: Nature, v. 398, p. 700–701, doi:http://dx.doi.org/10.1038/19516
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    1. Vecoli M.,
    2. Clément G.,
    3. Meyer-Berthaud B.
    1. Meyer-Berthaud B.,
    2. Soriai A.,
    3. Decombeix A.-L.
    , 2010, The land plant cover in the Devonian: a reassessment of the evolution of the tree habit, in Vecoli M., Clément G., Meyer-Berthaud B., editors, The Terrestrialization Process: Modelling Complex Interactions at the Biosphere – Geosphere Interface: Geological Society, London, Special Publications, v. 339, p. 59–70, doi:http://dx.doi.org/10.1144/SP339.6
    OpenUrlCrossRef
  76. ↵
    1. Murphy A. E.,
    2. Sageman B. B.,
    3. Hollander D. J.
    , 2000, Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: a mechanism for the Late Devonian mass extinction: Geology, v. 28, n. 5, p. 427–430, doi:http://dx.doi.org/10.1130/0091-7613(2000)28<427:EBDOTM>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Nichols G.,
    2. Jones T. P.
    , 1992, Fusain in Carboniferous shallow marine sediments, Donegal, Ireland: the sedimentological effects of wildfire: Sedimentology, v. 39, n. 3, p. 487–502, doi:http://dx.doi.org/10.1111/j.1365-3091.1992.tb02129.x
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Patterson W. A. III.,
    2. Edwards K. J.,
    3. Maguire D. J.
    , 1987, Microscopic charcoal as a fossil indicator of fire: Quaternary Science Review, v. 6, n. 1, p. 3–23, doi:http://dx.doi.org/10.1016/0277-3791(87)90012-6
    OpenUrlCrossRef
  79. ↵
    1. Pausas J. G.,
    2. Keeley J. E.
    , 2009, A burning story: The role of fire in the history of life: BioScience, v. 59, n. 7, p. 593–601, doi:http://dx.doi.org/10.1525/bio.2009.59.7.10
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Belcher C. M.
    1. Power M. J.
    , 2013, A 21,000-year history of fire, in Belcher C. M., editor, Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science: Chichester, United Kingdom, John Wiley and Sons, p. 207–227.
  81. ↵
    1. Power M. J.,
    2. Marlon J.,
    3. Ortiz N.,
    4. Bartlein P. J.,
    5. Harrison S. P.,
    6. Mayle F. E.,
    7. Ballouche A.,
    8. Bradshaw R. H. W.,
    9. Carcaillet C.,
    10. Cordova C.,
    11. Mooney S.,
    12. Moreno P. I.,
    13. Prentice I. C.,
    14. Thonicke K.,
    15. Tinner W.,
    16. Whitlock C.,
    17. Zhang Y.,
    18. Zhao Y.,
    19. Ali A. A.,
    20. Anderson R. S.,
    21. Beer R.,
    22. Behling H.,
    23. Briles C.,
    24. Brown K. J.,
    25. Brunelle A.,
    26. Bush M.,
    27. Camill P.,
    28. Chu G. Q.,
    29. Clark J.,
    30. Colombaroli D.,
    31. Connor S.,
    32. Daniau A.-L.,
    33. Daniels M.,
    34. Dodson J.,
    35. Doughty E.,
    36. Edwards M. E.,
    37. Finsinger W.,
    38. Foster D.,
    39. Frechette J.,
    40. Gaillard M.-J.,
    41. Gavin D. G.,
    42. Gobet E.,
    43. Haberle S.,
    44. Hallett D. J.,
    45. Higuera P.,
    46. Hope G.,
    47. Horn S.,
    48. Inoue J.,
    49. Kaltenrieder P.,
    50. Kennedy L.,
    51. Kong Z. C.,
    52. Larsen C.,
    53. Long C. J.,
    54. Lynch J.,
    55. Lynch E. A.,
    56. McGlone M.,
    57. Meeks S.,
    58. Mensing S.,
    59. Meyer G.,
    60. Minckley T.,
    61. Mohr J.,
    62. Nelson D. M.,
    63. New J.,
    64. Newnham R.,
    65. Noti R.,
    66. Oswald W.,
    67. Pierce J.,
    68. Richard P. J. H.,
    69. Rowe C.,
    70. Sanchez Goñi M. F.,
    71. Shuman B. N.,
    72. Takahara H.,
    73. Toney J.,
    74. Turney C.,
    75. Urrego-Sanchez D. H.,
    76. Umbanhowar C.,
    77. Vandergoes M.,
    78. Vanniere B.,
    79. Vescovi E.,
    80. Walsh M.,
    81. Wang X.,
    82. Williams N.,
    83. Wilmshurst J.,
    84. Zhang J. H.
    , 2008, Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data: Climate Dynamics, v. 30, n. 7–8, p. 887–907, doi:http://dx.doi.org/10.1007/s00382-007-0334-x
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    1. Prestianni C.,
    2. Deconbeix A-L.,
    3. Thorez J.,
    4. Fokan D.,
    5. Gerrienne P.
    , 2010, Famennian charcoal of Belgium: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 291, n. 1–2, p. 60–71, doi:http://dx.doi.org/10.1016/j.palaeo.2009.10.008
    OpenUrlCrossRefGeoRefWeb of Science
  83. ↵
    1. Pyne S. J.,
    2. Andrews P. L.,
    3. Laven R. D.
    , 1996, Introduction to wildland fire: New York, J. Wiley and Sons, 769 p.
  84. ↵
    1. Richardson A. R.,
    2. Eble C. F.,
    3. Hower J. C.,
    4. O'Keefe J. M. K.
    , 2012, A critical re-examination of the petrology of the No. 5 Block coal in eastern Kentucky with special attention to the origin of inertinite macerals in the splint lithotypes: International Journal of Coal Geology, v. 98, p. 41–49, doi:http://dx.doi.org/10.1016/j.coal.2012.04.003
    OpenUrlCrossRefGeoRef
  85. ↵
    1. Rimmer S. M.
    , 2004, Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (U.S.A.): Chemical Geology, v. 206, n. 3–4, p. 373–391, doi:http://dx.doi.org/10.1016/j.chemgeo.2003.12.029
    OpenUrlCrossRefGeoRefWeb of Science
  86. ↵
    1. Rimmer S. M.,
    2. Cantrell D. J.,
    3. Gooding P. J.
    , 1993, Rock-Eval pyrolysis and vitrinite reflectance trends in the Cleveland Shale Member of the Ohio Shale, eastern Kentucky: Organic Geochemistry, v. 20, n. 6, p. 735–745, doi:http://dx.doi.org/10.1016/0146-6380(93)90058-J
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Rimmer S. M.,
    2. Thompson J. A.,
    3. Goodnight S. A.,
    4. Robl T. L.
    , 2004, Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 215, n. 1–2, p. 125–154, doi:http://dx.doi.org/10.1016/S0031-0182(04)00466-3
    OpenUrlCrossRefGeoRef
  88. ↵
    1. Ripley E. M.,
    2. Shaffer N. R.,
    3. Gilstrap M. S.
    , 1990, Distribution and geochemical characteristics of metal enrichment in the New Albany Shale (Devonian-Mississippian), Indiana: Economic Geology, v. 85, n. 8, p. 1790–1807, doi:http://dx.doi.org/10.2113/gsecongeo.85.8.1790
    OpenUrlAbstract/FREE Full Text
  89. ↵
    1. Robl T. L.,
    2. Taulbee D. N.,
    3. Barron L. S.,
    4. Jones W. C.
    , 1987, Petrologic chemistry of a Devonian Type II kerogen: Energy and Fuels, v. 1, n. 6, p. 507–513, doi:http://dx.doi.org/10.1021/ef00006a009
    OpenUrlCrossRef
  90. ↵
    1. Robl T. L.,
    2. Rimmer S. M.,
    3. Barron L. S.
    , 1992, Organic petrography of Mississippian and Devonian shales in east-central Kentucky: Fuel, v. 71, n. 3, p. 267–271, doi:http://dx.doi.org/10.1016/0016-2361(92)90072-V
    OpenUrlCrossRefGeoRef
  91. ↵
    1. Rowe N. P.,
    2. Jones T. P.
    , 2000, Devonian charcoal: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 164, n. 1–4, p. 331–338, doi:http://dx.doi.org/10.1016/S0031-0182(00)00191-7
    OpenUrlCrossRefGeoRef
  92. ↵
    1. Sageman B. B.,
    2. Murphy A. E.,
    3. Werne J. P.,
    4. Ver Straeten C. A.,
    5. Hollander D. J.,
    6. Lyons T. W.
    , 2003, A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin: Chemical Geology, v. 195, n. 1–4, p. 229–273, doi:http://dx.doi.org/10.1016/S0009-2541(02)00397-2
    OpenUrlCrossRefGeoRefWeb of Science
  93. ↵
    1. Scheckler S. E.
    , 1986, Geology, floristics and paleoecology of Late Devonian coal swamps from Applachian Laurentia (U.S.A.): Annales de la Société Géologique de Belgique, v. 109, p. 209–222.
    OpenUrlGeoRef
  94. ↵
    1. Briggs D. E. G.,
    2. Crowther P. R.
    1. Scheckler S. E.
    , 2001, Afforestation - the first forests, in Briggs D. E. G., Crowther P. R., editors, Palaeobiology II: Oxford, England, Blackwell Science, Ltd., p. 67–71.
  95. ↵
    1. Schopf J. M.,
    2. Schwietering J. F.
    , 1970, The Foerstia zone of the Ohio and Chattanooga Shales: U.S. Geological Survey Bulletin 1294-H, 15 p.
  96. ↵
    1. Scotese C. R.
    , 2011, PALEOMAP project: doi:http://www.scotese.com/Default.htm. Accessed November 17, 2014.
  97. ↵
    1. Panchen A. L.
    1. Scott A. C.
    , 1980, The ecology of some Upper Palaeozoic floras, in Panchen A. L., editor, The terrestrial environment and origin of land vertebrates: London, England, Systematics Association Special Volume 15, Academic Press, p. 87–115.
  98. ↵
    1. Scott A. C.
    , 2000, The Pre-Quaternary history of fire: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 164, n. 1–4, p. 281–329, doi:http://dx.doi.org/10.1016/S0031-0182(00)00192-9
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Scott A. C.
    , 2002, Coal petrology and the origin of coal macerals: a way ahead?: International Journal of Coal Geology, v. 50, n. 1–4, p. 119–134, doi:http://dx.doi.org/10.1016/S0166-5162(02)00116-7
    OpenUrlCrossRefGeoRefWeb of Science
  100. ↵
    1. Cerdà A.,
    2. Robichaud P.
    1. Scott A. C.
    , 2009, Forest Fire in the Fossil Record, in Cerdà A., Robichaud P., editors, Fire Effects on Soils and Restoration Strategies: New Hampshire, Science Publishers Inc., p. 1–37.
  101. ↵
    1. Scott A. C.
    , 2010, Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 291, n. 1–2, p. 11–39, doi:http://dx.doi.org/10.1016/j.palaeo.2009.12.012
    OpenUrlCrossRefGeoRefWeb of Science
  102. ↵
    1. Scott A. C.,
    2. Glasspool I. J.
    , 2006, The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration: Proceedings of the National Academy of Sciences of the United States of America, v. 103, n. 29, p. 10861–10865, doi:http://dx.doi.org/10.1073/pnas.0604090103
  103. ↵
    1. Scott A. C.,
    2. Glasspool I. J.
    , 2007, Observations and experiments on the origin and formation of inertinite group macerals: International Journal of Coal Geology, v. 70, n. 1–3, p. 53–66, doi:http://dx.doi.org/10.1016/j.coal.2006.02.009
    OpenUrlCrossRefGeoRefWeb of Science
  104. ↵
    1. Scott A. C.,
    2. Jones T. P.
    , 1994, The nature and influence of fire in Carboniferous ecosystems: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 106, n. 1–4, p. 91–112, doi:http://dx.doi.org/10.1016/0031-0182(94)90005-1
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Scott A. C.,
    2. Cripps J. A.,
    3. Nichols G. J.,
    4. Collinson M. E.
    , 2000, The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 164, p. 1–31, doi:http://dx.doi.org/10.1016/S0031-0182(00)00168-1
    OpenUrlCrossRefGeoRefWeb of Science
  106. ↵
    1. Scott A. C.,
    2. Bowman D. J. M. S.,
    3. Bond W. J.,
    4. Pyne S. J.,
    5. Alexander M.
    , 2014, Fire on Earth: An Introduction: Chichester, United Kingdom, John Wiley and Sons, 413 p.
  107. ↵
    1. Skolnick H.
    , 1958, Observations on fusain: American Association of Petroleum Geologists Bulletin, v. 42, n. 9, p. 2223–2236.
    OpenUrlAbstract
  108. ↵
    1. Smith D. M.,
    2. Griffin J. J.,
    3. Goldberg E. D.
    , 1973, Elemental carbon in marine sediments: a baseline for burning: Nature, v. 241, p. 268–270, doi:http://dx.doi.org/10.1038/241268a0
    OpenUrlCrossRefGeoRefWeb of Science
  109. ↵
    1. Solomon B. J.,
    2. Hutton A. C.,
    3. Henstridge D. A.,
    4. Ivanac J. F.
    , 1984, Stratigraphy and organic petrography of Mississippian and Devonian Oil Shale at the Means Project, East-Central Kentucky: Lexington, Kentucky, University of Kentucky, Eastern Oil Shale Symposium Proceedings, IMMR, p. 365–392.
  110. ↵
    1. Stein W. E.,
    2. Berry C. M.,
    3. Hernick L. V.,
    4. Mannolini F.
    , 2012, Surprisingly complex community discovered in the mid-Devonian fossil forest of Gilboa: Nature, v. 483, p. 778–81, doi:http://dx.doi.org/10.1038/nature10819
    OpenUrlCrossRef
  111. ↵
    1. Streel M.,
    2. Caputo M. V.,
    3. Loboziak S.,
    4. Melo J. H. G.
    , 2000, Late Frasnian-Famennian climates based on palynomorph analyses and the question of Late Devonian glaciations: Earth Science Reviews, v. 52, n. 1–3, p. 121–173, doi:http://dx.doi.org/10.1016/S0012-8252(00)00026-X
    OpenUrlCrossRef
  112. ↵
    1. Stubblefield S. P.,
    2. Taylor T. N.,
    3. Beck C. B.
    , 1985, Studies of Paleozoic fungi. IV. Wood-decaying fungi in Callixylon newberryi from the Upper Devonian: American Journal of Botany, v. 72, n. 11, p. 1765–1774, doi:http://dx.doi.org/10.2307/2443734
    OpenUrlCrossRefGeoRefWeb of Science
  113. ↵
    1. Taylor G. H.,
    2. Teichmüller M.,
    3. Davis A.,
    4. Diessel C. F. K.,
    5. Littke R.,
    6. Robert P.
    , 1998, Organic Petrology: Berlin, Germany, Gebrüder Borntraeger, 704 p.
  114. ↵
    1. Taylor L. L.,
    2. Leake J. R.,
    3. Quirk J.,
    4. Hardy K.,
    5. Banwart S. A.,
    6. Beerling D. J.
    , 2009a, Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm: Geobiology, v. 7, n. 2, p. 171–191, doi:http://dx.doi.org/10.1111/j.1472-4669.2009.00194.x
    OpenUrlCrossRefPubMedWeb of Science
  115. ↵
    1. Taylor T. N.,
    2. Osborn J. M.
    , 1996, The importance of fungi in shaping the paleoecosystem: Review of Palaeobotany and Palynology, v. 90, n. 3–4, p. 249–262, doi:http://dx.doi.org/10.1016/0034-6667(95)00086-0
    OpenUrlCrossRefGeoRefWeb of Science
  116. ↵
    1. Taylor T. N.,
    2. Taylor E. L.,
    3. Krings M.
    , 2009b, Paleobotany: The Biology and Evolution of Fossil Plants, 2nd Edition: Amsterdam, The Netherlands, Elsevier Science BV, 1230 p.
  117. ↵
    1. Thompson J. A.
    , ms, 2004, Assessing Organic Matter Type in Upper Devonian-Lower Mississippian Black Shales: A Case Study from the Central Appalachian Basin: Lexington, Kentucky, University of Kentucky, M. S. thesis, 113 p.
  118. ↵
    1. Tribovillard N.,
    2. Averbuch O.,
    3. Devleeschouwer X.,
    4. Racki G.,
    5. Riboulleau A.
    , 2004, Deep-water anoxia over the Frasnian-Famennian boundary (La Serre, France): a tectonically induced oceanic anoxic event?: Terra Nova, v. 16, n. 5, p. 288–295, doi:http://dx.doi.org/10.1111/j.1365-3121.2004.00562.x
    OpenUrlCrossRefGeoRefWeb of Science
  119. ↵
    1. Uhl D.,
    2. Montenari M.
    , 2011, Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany: Geological Journal, v. 46, n. 1, p. 34–41, doi:http://dx.doi.org/10.1002/gj.1229
    OpenUrlCrossRefGeoRefWeb of Science
  120. ↵
    1. Uhl D.,
    2. Jasper A.,
    3. Schindler T.,
    4. Wuttke M.
    , 2010, Evidence of paleowildfire in the early Middle Triassic (early Anisian) Voltzia sandstone: The oldest post-Permian macroscopic evidence of wildfire discovered so far: Palaios, v. 25, n. 12, p. 837–842, doi:http://dx.doi.org/10.2110/palo.2010.p10-012r
    OpenUrlAbstract/FREE Full Text
  121. ↵
    1. Verardo D. J.,
    2. Ruddiman W. F.
    , 1996, Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: Climatic and geochemical significance: Geology, v. 24, n. 9, p. 855–857, doi:http://dx.doi.org/10.1130/0091-7613(1996)024<0855:LPCITA>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Watson A.,
    2. Lovelock J. E.,
    3. Margulis L.
    , 1978, Methanogenesis, fires and the regulation of atmospheric oxygen: Biosystems, v. 10, n. 4, p. 293–298, doi:http://dx.doi.org/10.1016/0303-2647(78)90012-6
    OpenUrlCrossRefPubMedWeb of Science
  123. ↵
    1. Werne J. P.,
    2. Sageman B. B.,
    3. Lyons T. W.,
    4. Hollander D. J.
    , 2002, An integrated assessment of a “type euxinic” deposit: Evidence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation: American Journal of Science, v. 302, n. 2, p. 110–143, doi:http://dx.doi.org/10.2475/ajs.302.2.110
    OpenUrlAbstract/FREE Full Text
  124. ↵
    1. Koeberl C.,
    2. MacLeod K. C.
    1. Wignall P. B.,
    2. Twitchett R. J.
    , 2002, Extent, duration, and nature of the Permian-Triassic superanoxic event, in Koeberl C., MacLeod K. C., editors, Catastrophic events and mass extinctions: impacts and beyond: Geological Society of America Special Paper 356, p. 395–413, doi:http://dx.doi.org/10.1130/0-8137-2356-6.395
    OpenUrlCrossRef
  125. ↵
    1. Wildman R. A. Jr..,
    2. Hickey L. J.,
    3. Dickinson M. B.,
    4. Berner R. A.,
    5. Robinson J. M.,
    6. Dietrich M.,
    7. Essenhigh R. H.,
    8. Wildman C. R.
    , 2004, Burning of forest materials under late Paleozoic high atmospheric oxygen levels: Geology, v. 32, n. 5, p. 457–460, doi:http://dx.doi.org/10.1130/G20255.1
    OpenUrlAbstract/FREE Full Text
  126. ↵
    1. Winslow M. R.
    , 1962, Plant spores and other microfossils from Upper Devonian and Lower Mississippian rocks of Ohio: U.S. Geological Survey Professional Paper 364, 93 p.
    OpenUrl
PreviousNext
Back to top

In this issue

American Journal of Science: 315 (8)
American Journal of Science
Vol. 315, Issue 8
1 Oct 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change
Susan M. Rimmer, Sarah J. Hawkins, Andrew C. Scott, Walter L. Cressler
American Journal of Science Oct 2015, 315 (8) 713-733; DOI: 10.2475/08.2015.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change
Susan M. Rimmer, Sarah J. Hawkins, Andrew C. Scott, Walter L. Cressler
American Journal of Science Oct 2015, 315 (8) 713-733; DOI: 10.2475/08.2015.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • STUDY SITES AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Earliest land plants created modern levels of atmospheric oxygen
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • wildfire
  • charcoal
  • black shale
  • Devonian
  • oxygen levels

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire