Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Mineralogical and geochemical constraints on mobilization and mineralization of rare Earth elements in the Lala Fe-Cu-(Mo, Ree) deposit, SW China

Wei Terry Chen and Mei-Fu Zhou
American Journal of Science September 2015, 315 (7) 671-711; DOI: https://doi.org/10.2475/07.2015.03
Wei Terry Chen
Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: chenweifly1@163.com
Mei-Fu Zhou
Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mfzhou@hku.hk chenweifly1@163.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Amli R.
    , 1975, Mineralogy and Rare Earth Geochemistry of Apatite and Xenotime from the Gloserheia Granite Pegmatite, Froland, Southern Norway: American Mineralogist, v. 60, n. 7–8, p. 607–620.
    OpenUrlGeoRefWeb of Science
  2. ↵
    1. Bau M.,
    2. Dulski P.
    , 1995, Comparative study of yttrium and rare earth element behaviours in fluorine-rich hydrothermal fluids: Contributions to Mineralogy and Petrology, v. 119, n. 2–3, p. 213–223, doi:http://dx.doi.org/10.1007/BF00307282
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Bea F.,
    2. Montero P.
    , 1999, Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy: Geochimica et Cosmochimica Acta, v. 63, n. 7–8, p. 1133–1153, doi:http://dx.doi.org/10.1016/S0016-7037(98)00292-0
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Bonyadi Z.,
    2. Davidson G. J.,
    3. Mehrabi B.,
    4. Meffre S.,
    5. Ghazban F.
    , 2011, Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry: Chemical Geology, v. 281, n. 3–4, p. 253–269, doi:http://dx.doi.org/10.1016/j.chemgeo.2010.12.013
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Carew M. J.
    , ms, 2004, Controls on Cu-Au mineralization and Fe oxide metasomatism in the Eastern Fold Belt, N.W. Queensland, Australia: Townsville, Australia, James Cook University, Ph. D. thesis, 308 p.
  6. ↵
    1. Chakhmouradian A. R.,
    2. Wall F.
    , 2012, Rare earth elements: Minerals, mines, magnets (and more): Elements, v. 8, n. 5, p. 333–340, doi:http://dx.doi.org/10.2113/gselements.8.5.333
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Chen G. W.,
    2. Yu X. W.,
    3. Cheng D. R.
    , 1991, Research on the thermo-chemical condition of the Fe-Cu mineralization in the Lala deposit, Sichuan Province: Southwest Deposit Geology, v. 5, p. 43–51 (in Chinese).
    OpenUrl
  8. ↵
    1. Chen W. T.,
    2. Zhou M.-F.
    , 2012, Paragenesis, stable isotopes, and molybdenite Re-Os isotope age of the Lala iron-copper deposit, southwest China: Economic Geology, v. 107, n. 3, p. 459–480, doi:http://dx.doi.org/10.2113/econgeo.107.3.459
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Chen W. T.,
    2. Zhou M.-F.,
    3. Zhao X.-F.
    , 2013, Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: Implication for the reconstruction of the Yangtze Block in Columbia: Precambrian Research, v. 231, p. 61–77, doi:http://dx.doi.org/10.1016/j.precamres.2013.03.011
    OpenUrlCrossRefGeoRef
  10. ↵
    1. Chen W. T.,
    2. Zhou M. F.,
    3. Gao J.-F.
    , 2014, Constraints of Sr isotopic compositions of apatite and carbonates on the origin of Fe and Cu mineralizing fluids in the Lala Fe-Cu-(Mo, LREE) deposit, SW China: Ore Geology Review, v. 61, p. 96–106, doi:http://dx.doi.org/10.1016/j.oregeorev.2014.01.008
    OpenUrlCrossRef
  11. ↵
    1. Chen Z. L.,
    2. Chen S. Y.
    , 1987, On the tectonic evolution of the west margin of the Yangzi Block: Chongqing, China, Chongqing Publishing House, 172 p. (in Chinese with English abstract).
  12. ↵
    1. Chen Z. Q.,
    2. Zhou W. N.
    , 1999, Classification and genesis of breccias in Baixila mining district in Dongchuan: Acta Geoscientia Sinica, v. 20, p. 298–302 (in Chinese with English abstract).
    OpenUrl
  13. ↵
    1. Dongen M. V.,
    2. Weinberg R. F.,
    3. Tomkins A. G.
    , 2010, REE-Y, Ti, and P remobilization in magmatic rocks by hydrothermal alteration during Cu-Au deposit formation: Economic Geology, v. 105, n. 4, p. 763–776, doi:http://dx.doi.org/10.2113/gsecongeo.105.4.763
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Douville E.,
    2. Bienvenu P.,
    3. Charlou J. L.,
    4. Donval J. P.,
    5. Fouquet Y.,
    6. Appriou P.,
    7. Gamo T.
    , 1999, Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems: Geochimica et Cosmochimica Acta, v. 63, n. 5, p. 627–643, doi:http://dx.doi.org/10.1016/S0016-7037(99)00024-1
    OpenUrlCrossRefGeoRefWeb of Science
  15. ↵
    1. Dymek R. F.
    , 1983, Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland: American Mineralogist, v. 68, n. 9–10, p. 880–899.
    OpenUrlAbstract
  16. ↵
    1. Edfelt A.,
    2. Armstrong R. N.,
    3. Smith M.,
    4. Martinsson O.
    , 2005, Alteration paragenesis and mineral chemistry of the Tjårrojåkka apatite-iron and Cu (-Au) occurrences, Kiruna area, northern Sweden: Mineralium Deposita, v. 40, n. 4, p. 409–434, doi:http://dx.doi.org/10.1007/s00126-005-0005-y
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Fan H. R.,
    2. Xie Y. H.,
    3. Wang K. Y.,
    4. Tao K. J.,
    5. Wilde S. A.
    , 2004, REE daughter minerals trapped in fluid inclusions in the giant Bayan Obo REE-Nb-Fe deposit, Inner Mongolia, China: International Geology Review, v. 46, n. 7, p. 638–645, doi:http://dx.doi.org/10.2747/0020-6814.46.7.638
    OpenUrlCrossRefGeoRef
  18. ↵
    1. Förster H.-J.
    , 1998, The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part I. The monazite–(Ce)-brabantite solid solution series: American Mineralogist, v. 83, n. 3–4, p. 259–272.
    OpenUrlAbstract
  19. ↵
    1. Förster H.-J.,
    2. Harlov D. E.
    , 1999, Monazite-(Ce)-huttonite solid solutions in granulite-facies metabasites from the Ivrea-Verbano zone, Italy: Mineralogical Magazine, v. 63, n. 4, p. 587–594, doi:http://dx.doi.org/10.1180/002646199548637
    OpenUrlAbstract
  20. ↵
    1. Gieré R.
    , 1993, Transport and deposition of REE in H2S-rich fluids: Evidence from accessory mineral assemblages: Chemical Geology, v. 110, n. 1–3, p. 251–268, doi:http://dx.doi.org/10.1016/0009-2541(93)90257-J
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Jones A. P.,
    2. Wall F.,
    3. Williams C. T.
    1. Gieré R.
    , 1996, Formation of rare earth minerals in hydrothermal systems, in Jones A. P., Wall F., Williams C. T., editors, Rare Earth Minerals: Chemistry, Origin and Ore Deposits: London, United Kingdom, Chapman & Hall, The Mineralogical Society Series, v. 7, p. 105–150.
    OpenUrl
  22. ↵
    1. Grant J. A.
    , 1986, The isocon diagram—a simple solution to Gresen's equation for metasomatic alteration: Economic Geology, v. 81, n. 8, p. 1976–1982, doi:http://dx.doi.org/10.2113/gsecongeo.81.8.1976
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Gresens R. L.
    , 1967, Composition-volume relationships of metasomatism: Chemical Geology, v. 2, p. 47–55, doi:http://dx.doi.org/10.1016/0009-2541(67)90004-6
    OpenUrlCrossRefGeoRef
  24. ↵
    1. Sylvester P.
    1. Griffin W. L.,
    2. Powell W. J.,
    3. Pearson N. J.,
    4. O'Reilly S. Y.
    , 2008, GLITTER: Data reduction software for laser ablation ICP-MS (appendix), in Sylvester P., editor, Laser Ablation-ICP-MS in the Earth Sciences: Mineralogical Association of Canada Short Course Series 40, p. 307–311.
  25. ↵
    1. Groves D. I.,
    2. Bierlein F. P.,
    3. Meinert L. D.,
    4. Hitzman M. W.
    , 2010, Iron oxide copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits: Economic Geology, v. 105, n. 3, p. 641–654, doi:http://dx.doi.org/10.2113/gsecongeo.105.3.641
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Haas J. R.,
    2. Shock E. L.,
    3. Sassani D. C.
    , 1995, Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures: Geochimica et Cosmochimica Acta, v. 59, n. 21, p. 4329–4350, doi:http://dx.doi.org/10.1016/0016-7037(95)00314-P
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Harlov D. E.,
    2. Förster H.-J.
    , 2002, High-grade fluid metasomatism on both a local and regional scale: The Seward Peninsula, Alaska and the Val Strona di Omegana, Ivrea-Verbano zone, northern Italy. Part II. Phosphate mineral chemistry: Journal of Petrology, v. 43, n. 5, p. 801–824, doi:http://dx.doi.org/10.1093/petrology/43.5.801
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Harlov D. E.,
    2. Förster H.-J.
    , 2003, Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite: American Mineralogist, v. 88, n. 8–9, p. 1209–1229.
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Harlov D. E.,
    2. Andersson U. B.,
    3. Förster H.-J.,
    4. Nyström J. O.,
    5. Dulski P.,
    6. Broman C.
    , 2002a, Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden: Chemical Geology, v. 191, n. 1–3, p. 47–72, doi:http://dx.doi.org/10.1016/S0009-2541(02)00148-1
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Harlov D. E.,
    2. Förster H.-J.,
    3. Nijland T. G.
    , 2002b, Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite: American Mineralogist, v. 87, n. 2–3, p. 245–261.
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Harlov D. E.,
    2. Wirth R.,
    3. Förster H.-J.
    , 2005, An experimental study of dissolution-reprecipitation in fluorapatite: Fluid infiltration and the formation of monazite: Contributions to Mineralogy and Petrology, v. 150, n. 3, p. 268–286, doi:http://dx.doi.org/10.1007/s00410-005-0017-8
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. He D. F.
    , ms, 2009, Petrological and geochemical characteristics of the Lala copper deposit in Sichuan Province: Guiyang, China, Institute of Geochemistry, Chinese Academy of Sciences, Ph. D. Thesis, 111 p. (in Chinese with English Abstract).
  33. ↵
    1. Porter T. M.
    1. Hitzman M. W.
    , 2000, Iron oxide-Cu-Au deposits: What, where, when, and why, in Porter T. M., editor, Hydrothermal Iron Oxide Copper Gold & Related Deposits: A Global Perspective: Adelaide, Australia, PGC Publishing, v. 1, p. 9–25.
    OpenUrl
  34. ↵
    1. Hitzman M. W.,
    2. Oreskes N.,
    3. Einaudi M. T.
    , 1992, Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits: Precambrian Research, v. 58, n. 1–4, p. 241–287, doi:http://dx.doi.org/10.1016/0301-9268(92)90121-4
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Hou L.,
    2. Ding J.,
    3. Wang C. M.,
    4. Liao Z. W.,
    5. Guo Y.,
    6. Wang S. W.,
    7. Wang Z. Z.
    , 2013, Ore-forming fluid and metallogenesis of the Yinachang Fe-Cu-Au-REE deposit, Wuding, Yunan Province, China: Acta Petrologica Sinica, v. 29, p. 1187–1202 (in Chinese with English abstract).
    OpenUrl
  36. ↵
    1. Jin M. X.,
    2. Shen S.
    , 1998, Fluid features and metallogenic conditions in Lala copper deposit, Huili, Sichuan, China: Geological Science and Technology Information, v. 17, p. 45–48 (in Chinese with English abstract).
    OpenUrlWeb of Science
  37. ↵
    1. Johnson J. P.,
    2. McCulloch M. T.
    , 1995, Sources of mineralising fluids for the Olympic Dam deposit (South Australia): Sm-Nd isotopic constraints: Chemical Geology, v. 121, n. 1–4, p. 177–199, doi:http://dx.doi.org/10.1016/0009-2541(94)00125-R
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Leake B. E.,
    2. Woolley A. R.,
    3. Arps C. E. S.,
    4. Birch W. D.,
    5. Gilbert M. C.,
    6. Grice G. D.,
    7. Hawthorne F. C.,
    8. Kato A.,
    9. Kisch H. J.,
    10. Krivovichev V. G.,
    11. Linthout K.,
    12. Laird J.,
    13. Mandarino J. A.,
    14. Maresch W. V.,
    15. Nickel E. H.,
    16. Rock N. M. S.,
    17. Shumacher J. C.,
    18. Smith D. C.,
    19. Stephenson N. C. N.,
    20. Ungaretti L.,
    21. Wittaker E. J. W.,
    22. Youzhi G.
    , 1997, Nomenclature of amphiboles. Report of Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names: Canadian Mineralogist, v. 35, p. 219–246.
    OpenUrl
  39. ↵
    1. Li F. H.,
    2. Tan J. M.,
    3. Shen Y. L.,
    4. Yu F. X.,
    5. Zhou G. F.,
    6. Pan X. N.,
    7. Li X. Z.
    , 1988, The Presinian in the Kangdian area: Chongqing, China, Chongqing Publishing House, 396 p. (in Chinese with English abstract).
  40. ↵
    1. Li X. H.,
    2. Li Z. X.,
    3. Wingate M. T. D.,
    4. Chung S. L.,
    5. Liu Y.,
    6. Lin G. C.,
    7. Li W. X.
    , 2006, Geochemistry of the 755Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?: Precambrian Research, v. 146, n. 1–2, p. 1–15, doi:http://dx.doi.org/10.1016/j.precamres.2005.12.007
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Li Z. Q.,
    2. Hu R. Z.,
    3. Wang J. Z.,
    4. Liu J. J.,
    5. Li C. Y.,
    6. Liu Y. P.,
    7. Ye L.
    , 2002, Lala Fe-oxide-Cu-Au-U-REE ore deposit, Sichuan China: An example of superimposed mineralization: Bulletin of Mineralogy, Petrology and Geochemistry, v. 21, p. 258–260 (in Chinese with English abstract).
    OpenUrl
  42. ↵
    1. Li Z. X.,
    2. Li X. H.,
    3. Kinny P. D.,
    4. Wang J.,
    5. Zhang S.,
    6. Zhou H.
    , 2003, Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia: Precambrian Research, v. 122, n. 1–4, p. 85–109, doi:http://dx.doi.org/10.1016/S0301-9268(02)00208-5
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Mark G.,
    2. Oliver N. H. S.,
    3. Williams P. J.
    , 2006, Mineralogical and chemical evolution of the Ernest Henry Fe oxide-Cu-Au ore system, Cloncurry district, northwest Queensland, Australia: Mineralium Deposita, v. 40, n. 8, p. 769–801, doi:http://dx.doi.org/10.1007/s00126-005-0009-7
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Migdisov A. A.,
    2. Williams-Jones A. E.
    , 2007, An experimental study of the solubility and speciation of neodymium (III) fluoride in F-bearing aqueous solutions: Geochimica et Cosmochimica Acta, v. 71, n. 12, p. 3056–3069, doi:http://dx.doi.org/10.1016/j.gca.2007.04.004
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Migdisov A. A.,
    2. Williams-Jones A. E.
    , 2014, Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous fluids: Mineralium Deposits, v. 49, n. 8, p. 987–997, doi:http://dx.doi.org/10.1007/s00126-014-0554-z
    OpenUrlCrossRef
  46. ↵
    1. Migdisov A. A.,
    2. Williams-Jones A. E.,
    3. Wagner T. E.
    , 2009, An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C: Geochimica et Cosmochimica Acta, v. 73, n. 23, p. 7087–7109, doi:http://dx.doi.org/10.1016/j.gca.2009.08.023
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Munoz J. L.
    , 1992, Calculation of HF and HCl fugacities from biotite compositions: Revised equations: Geological Society of America Abstracts with Programs, v. 24, p. 221.
    OpenUrl
  48. ↵
    1. Pan Y.
    , 1997, Zircon- and monazite-forming metamorphic reactions at Manitouwadge, Ontario: Canadian Mineralogist, v. 35, n. 1, p. 105–118.
    OpenUrl
  49. ↵
    1. Pan Y.,
    2. Fleet M. E.,
    3. Macrae N. D.
    , 1993, Oriented monazite inclusions in apatite porphyroblasts from the Hemlo gold deposit, Ontario, Canada: Mineralogical Magazine, v. 57, p. 697–707, doi:http://dx.doi.org/10.1180/minmag.1993.057.389.14
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Parak T.
    , 1973, Rare earths in the apatite iron ores of Lappland together with some data about the Sr, Th, and U content of these ores: Economic Geology, v. 68, n. 2, p. 210–221, doi:http://dx.doi.org/10.2113/gsecongeo.68.2.210
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Pearce N. J. G.,
    2. Perkins W. T.,
    3. Westgate J. A.,
    4. Gorton M. P.,
    5. Jackson S. E.,
    6. Neal C. R.,
    7. Chenery S. P.
    , 1997, A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials: Geostandards Newsletter, v. 21, n. 1, p. 115–144, doi:http://dx.doi.org/10.1111/j.1751-908X.1997.tb00538.x
    OpenUrlCrossRefWeb of Science
  52. ↵
    1. Porter T. M.
    1. Pollard P. J.
    , 2000, Evidence of a magmatic fluid and metal source for Fe-oxide Cu-Au mineralization, in Porter T. M., editor, Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective: Adelaide, Australia, PGC Publishing, v. 1, p. 27–41.
    OpenUrl
  53. ↵
    1. Pollard P. J.
    , 2006, An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces: Mineralium Deposita, v. 41, n. 2, p. 179–187, doi:http://dx.doi.org/10.1007/s00126-006-0054-x
    OpenUrlCrossRefGeoRefWeb of Science
  54. ↵
    1. Kohn M. J.,
    2. Rakovan J.,
    3. Hughes J. M.
    1. Pyle J. M.,
    2. Spear F. S.,
    3. Wark D. A.
    , 2002, Electron microprobe analysis of REE in apatite, monazite and xenotime: Protocols and pitfalls, in Kohn M. J., Rakovan J., Hughes J. M., editors, Phosphates: Reviews in Mineralogy and Geochemistry, v. 48, n. 1, p. 337–362, doi:http://dx.doi.org/10.2138/rmg.2002.48.8
    OpenUrlCrossRef
  55. ↵
    1. Qiu Y. M.,
    2. Gao S.,
    3. McNaughton N. J.,
    4. Groves D. I.,
    5. Ling W.
    , 2000, First evidence of >3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics: Geology, v. 28, n. 1, p. 11–14, doi:http://dx.doi.org/10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Richards J. P.,
    2. Mumin A. H.
    , 2013, Magmatic-hydrothermal processes within an evolving Earth: Iron oxide-copper-gold and porphyry Cu±Mo±Au deposits: Geology, v. 41, n. 7, p. 767–770, doi:http://dx.doi.org/10.1130/G34275.1
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Ruan H.,
    2. Hua R.,
    3. Cox D. P.
    , 1991, Copper deposition by fluid mixing in deformed strata adjacent to a salt diaper, Dongchuan area, Yunnan Province, China: Economic Geology, v. 86, n. 7, p. 1539–1545, doi:http://dx.doi.org/10.2113/gsecongeo.86.7.1539
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Rubin J. N.,
    2. Henry C. D.,
    3. Price J. G.
    , 1993, The mobility of zirconium and other “immobile” elements during hydrothermal alteration: Chemical Geology, v. 110, n. 1–3, p. 29–47, doi:http://dx.doi.org/10.1016/0009-2541(93)90246-F
    OpenUrlCrossRefGeoRefWeb of Science
  59. ↵
    1. Salvi S.,
    2. Williams-Jones A. E.
    , 1990, The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: Evidence from fluid inclusions: Geochimica et Cosmochimica Acta, v. 54, n. 9, p. 2403–2418, doi:http://dx.doi.org/10.1016/0016-7037(90)90228-D
    OpenUrlCrossRefWeb of Science
  60. ↵
    1. Linnen R. L.,
    2. Samson I. M.
    1. Salvi S.,
    2. Williams-Jones A. E.
    , 2005, Alkaline granite-syenite hosted deposits, in Linnen R. L., Samson I. M., editors, Rare-Element Geochemistry and Mineral Deposits: Geological Association of Canada Short Course Notes, v. 17, p. 315–341.
    OpenUrl
  61. ↵
    1. Linnen R. L.,
    2. Samson I. M.
    1. Samson I. M.,
    2. Wood S. A.
    , 2005, The rare-earth elements: Behavior in hydrothermal fluids and concentration in hydrothermal mineral deposits, exclusive of alkaline settings, in Linnen R. L., Samson I. M., editors, Rare-Element Geochemistry and Mineral Deposits: Geological Association of Canada Short Course Notes, v. 17, p. 269–297.
    OpenUrl
  62. ↵
    1. Schandl E. S.,
    2. Gorton M. P.
    , 2004, A textural and geochemical guide to the identification of hydrothermal monazite: Criteria for selection of samples for dating epigenetic hydrothermal ore deposits: Economic Geology, v. 99, n. 5, p. 1027–1035, doi:http://dx.doi.org/10.2113/gsecongeo.99.5.1027
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Barnes H. L.
    1. Seward T. M.,
    2. Barnes H. L.
    , 1997, Metal transport by hydrothermal ore fluids, in Barnes H. L., editor, Geochemistry of Hydrothermal Ore Deposits: New York, Wiley, 3rd edition, p. 435–486.
  64. ↵
    1. Shentu B. Y.
    , 1997, Geological and geochemical characteristics of the Lala copper deposit and its formation model: Tethyan Geology, v. 21, p. 112–126 (in Chinese).
    OpenUrl
  65. ↵
    1. Sidder G. B.,
    2. Day W. C.,
    3. Nuelle L. M.,
    4. Seeger C. M.,
    5. Kisvarsanyi E. B.
    , 1993, Mineralogic and fluid-inclusion studies of the Pea Ridge iron-rare-earth-element deposit, southeast Missouri: U.S. Geological Survey Bulletin 2039, p. 205–216.
  66. ↵
    1. Sillitoe R. H.
    , 2003, Iron oxide-copper-gold deposits: An Andean view: Mineralium Deposita, v. 38, n. 7, p. 787–812, doi:http://dx.doi.org/10.1007/s00126-003-0379-7
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Skirrow R. G.,
    2. Bastrakov E. N.,
    3. Baroncii K.,
    4. Fraser G. L.,
    5. Creaser R. A.,
    6. Fanning C. M.,
    7. Raymond O. L.,
    8. Davidson G. J.
    , 2007, Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler craton, South Australia: Economic Geology, v. 102, n. 8, p. 1441–1470, doi:http://dx.doi.org/10.2113/gsecongeo.102.8.1441
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Stormer J. C. Jr..,
    2. Pierson M. J.,
    3. Tacker R. C.
    , 1993, Variation of F and Cl X-ray intensity due to anisotropic diffusion of apatite during electron microprobe analysis: American Mineralogist, v. 78, p. 641–648.
    OpenUrlAbstract
  69. ↵
    1. Sun K.,
    2. Shen Y.,
    3. Liu G.,
    4. Li Z.,
    5. Pan X.
    , 1991, Proterozoic iron-copper deposits in central Yunnan Province: Wuhan, China, China University of Geoscience Press, 169 p. (in Chinese with English abstract).
  70. ↵
    1. Saunders A. D.,
    2. Norry M. J.
    1. Sun S. S.,
    2. McDonough W. F.
    , editors, 1989, Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes, in Saunders A. D., Norry M. J., editors, Magmatism in the Ocean Basins: Geological Society, London, Special Publications, v. 42, p. 313–345, doi:http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19
    OpenUrlCrossRef
  71. ↵
    1. Sun X.,
    2. Tang Q.,
    3. Sun W.,
    4. Xu L.,
    5. Zhai W.,
    6. Liang J.,
    7. Liang Y.,
    8. Shen K.,
    9. Zhang Z.,
    10. Zhou B.,
    11. Wang F.
    , 2007, Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications: Geochimica et Cosmochimica Acta, v. 71, n. 11, p. 2896–2905, doi:http://dx.doi.org/10.1016/j.gca.2007.03.030
    OpenUrlCrossRefGeoRefWeb of Science
  72. ↵
    1. Sun Y.,
    2. Li C.
    , 1990, Mineralization mechanism of Lala copper deposit in Sichuan Province: Journal of Chengdu College of Geology, v. 17, p. 1–9 (in Chinese with English abstract).
    OpenUrl
  73. ↵
    1. Sun Y.,
    2. Shu X. L.,
    3. Xiao Y. F.
    , 2006, Isotopic geochemistry of the Lala copper deposit, Sichuan Province, China and its metallogenic significance: Geochimica, v. 35, p. 553–559 (in Chinese with English Abstract).
    OpenUrl
  74. ↵
    1. Torab F. M.,
    2. Lehmann B.
    , 2007, Magnetite-apatite deposits of the Bafq district, central Iran: Apatite geochemistry and monazite geochronology: Mineralogical Magazine, v. 71, n. 3, p. 347–363, doi:http://dx.doi.org/10.1180/minmag.2007.071.3.347
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. Tornos F.,
    2. Velasco F.,
    3. Barra F.,
    4. Morata D.
    , 2010, The Tropezón Cu-Mo-(Au) deposit, Northern Chile: the missing link between IOCG and porphyry copper systems?: Mineralium Deposita, v. 45, n. 4, p. 313–321, doi:http://dx.doi.org/10.1007/s00126-010-0277-8
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Tu X. L.,
    2. Zhang H.,
    3. Deng W. F.,
    4. Ling M. X.,
    5. Liang H. Y.,
    6. Liu Y.,
    7. Sun W. D.
    , 2011, Application of RESOlution in-situ laser ablation ICP-MS in trace element analyses: Geochimica, v. 40, n. 1, p. 83–98 (in Chinese with English abstract).
    OpenUrl
  77. ↵
    1. Hedenquist J. W.,
    2. Thompson J. F. H.,
    3. Goldfarb R. J.,
    4. Richards J. P.
    1. Williams P. J.,
    2. Barton M. D.,
    3. Johnson D. A.,
    4. Fontboté L.,
    5. de Haller A.,
    6. Mark G.,
    7. Oliver N. H. S.,
    8. Marschik R.
    , 2005, Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin, in Hedenquist J. W., Thompson J. F. H., Goldfarb R. J., Richards J. P., editors, Economic Geology 100th Anniversary Volume, 1905-2005: Littleton, Colorado, Society of Economic Geologists, Inc., p. 371–405.
  78. ↵
    1. Williams-Jones A. E.,
    2. Samson I. M.,
    3. Olivo G. R.
    , 2000, The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico: Economic Geology, v. 95, n. 2, p. 327–342, doi:http://dx.doi.org/10.2113/gsecongeo.95.2.327
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. Williams-Jones A. E.,
    2. Migdisov A. A.,
    3. Samson I. M.
    , 2012, Hydrothermal mobilisation of the rare earth elements—a tale of “Ceria” and “Yttria”: Elements, v. 8, n. 5, p. 355–360, doi:http://dx.doi.org/10.2113/gselements.8.5.355
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Wood S. A.,
    2. Tait C. D.,
    3. Janecky D. R.,
    4. Constantopoulos T. L.
    , 1995, The aqueous geochemistry of rare earth elements: V. Application of photoacoustic spectroscopy to speciation at low rare earth element concentrations: Geochimica et Cosmochimica Acta, v. 59, n. 24, p. 5219–5222, doi:http://dx.doi.org/10.1016/0016-7037(95)00376-2
    OpenUrlCrossRefGeoRef
  81. ↵
    1. Yu Z.,
    2. Liu C.
    , 1988, One allosource-comineralization ore deposit—A discussion on the genesis of Lala ore deposit in Sichuan, SW China: Acta Petrologica Sinica, v. 2, p. 78–87 (in Chinese with English abstract).
    OpenUrl
  82. ↵
    1. Zhang S. B.,
    2. Zheng Y. F.,
    3. Wu Y. B.,
    4. Zhao Z. F.,
    5. Gao S.,
    6. Wu F. Y.
    , 2006, Zircon U–Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China: Earth and Planetary Science Letters, v. 252, p. 56–71, doi:http://dx.doi.org/10.1016/j.epsl.2006.09.027
    OpenUrlCrossRefGeoRefWeb of Science
  83. ↵
    1. Zhao J. H.,
    2. Zhou M. F.,
    3. Yan D. P.,
    4. Yang Y. H.,
    5. Sun M.
    , 2008, Zircon Lu-Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze block, China: Precambrian Research, v. 163, n. 3–4, p. 189–209, doi:http://dx.doi.org/10.1016/j.precamres.2007.11.003
    OpenUrlCrossRefGeoRefWeb of Science
  84. ↵
    1. Zhao X. F.,
    2. Zhou M. F.
    , 2011, Fe-Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province: Mineralium Deposita, v. 46, n. 7, p. 731–747, doi:http://dx.doi.org/10.1007/s00126-011-0342-y
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Zhao X. F.,
    2. Zhou M.-F.,
    3. Li J. W.,
    4. Selby D.,
    5. Li X.-H.,
    6. Qi L.
    , 2013, Sulfide Re–Os and Rb–Sr isotopic dating of the Kangdian IOCG metallogenic province, Southwest China: Implications for regional metallogenesis: Economic Geology, v. 108, n. 6, p. 1489–1498, doi:http://dx.doi.org/10.2113/econgeo.108.6.1489
    OpenUrlAbstract/FREE Full Text
  86. ↵
    1. Zhou M. F.,
    2. Yan D. P.,
    3. Kennedy A. K.,
    4. Li Y.,
    5. Ding J.
    , 2002, SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze block, South China: Earth and Planetary Science Letters, v. 196, n. 1–2, p. 51–67, doi:http://dx.doi.org/10.1016/S0012-821X(01)00595-7
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Zhou M. F.,
    2. Ma Y.,
    3. Yan D. P.,
    4. Xia X.,
    5. Zhao J. H.,
    6. Sun M.
    , 2006, The Yanbian Terrane (southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze block: Precambrian Research, v. 144, n. 1–2, p. 19–38, doi:http://dx.doi.org/10.1016/j.precamres.2005.11.002
    OpenUrlCrossRefGeoRefWeb of Science
  88. ↵
    1. Zhou M.-F.,
    2. Zhao X.-F.,
    3. Chen W. T.,
    4. Li X.-C.,
    5. Wang W.,
    6. Yan D.-P.,
    7. Qiu H.-N.
    , 2014, Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam: Earth-Science Reviews, v. 139, p. 59–82, doi:http://dx.doi.org/10.1016/j.earscirev.2014.08.013
    OpenUrlCrossRefGeoRef
  89. ↵
    1. Zhu C.,
    2. Sverjensky D. A.
    , 1992, F–Cl–OH partitioning between biotite and apatite: Geochimica et Cosmochimica Acta, v. 56, n. 9, p. 3435–3467, doi:http://dx.doi.org/10.1016/0016-7037(92)90390-5
    OpenUrlCrossRefGeoRefWeb of Science
  90. ↵
    1. Zhu Z. M.
    , ms, 2011, Lala iron oxide copper gold deposit: metallogenic epoch and metal sources: Chengdu, China, Chengdu University of Technology and Science, Ph. D. thesis, 102 p. (in Chinese with English Abstract).
  91. ↵
    1. Zhu Z. M.,
    2. Zeng L. X.,
    3. Zhou J. Y.,
    4. Luo L. P.,
    5. Chen J. B.,
    6. Shen B.
    , 2009, Lala iron oxide-copper-gold deposit in Sichuan Province: Evidence from mineralography: Geological Journal of China Universities, v. 15, p. 485–495 (in Chinese with English abstract).
    OpenUrl
  92. ↵
    1. Ziemann M. A.,
    2. Förster H.-J.,
    3. Harlov D. E.,
    4. Frei D.
    , 2005, Origin of fluorapatite-monazite assemblages in a metamorphosed, sillimanite-bearing pegmatoid, Reinbolt Hills, East Antarctica: European Journal of Mineralogy, v. 17, n. 4, p. 567–579, doi:http://dx.doi.org/10.1127/0935-1221/2005/0017-0567
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 315 (7)
American Journal of Science
Vol. 315, Issue 7
1 Sep 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mineralogical and geochemical constraints on mobilization and mineralization of rare Earth elements in the Lala Fe-Cu-(Mo, Ree) deposit, SW China
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Mineralogical and geochemical constraints on mobilization and mineralization of rare Earth elements in the Lala Fe-Cu-(Mo, Ree) deposit, SW China
Wei Terry Chen, Mei-Fu Zhou
American Journal of Science Sep 2015, 315 (7) 671-711; DOI: 10.2475/07.2015.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Mineralogical and geochemical constraints on mobilization and mineralization of rare Earth elements in the Lala Fe-Cu-(Mo, Ree) deposit, SW China
Wei Terry Chen, Mei-Fu Zhou
American Journal of Science Sep 2015, 315 (7) 671-711; DOI: 10.2475/07.2015.03
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • KANGDIAN IOCG METALLOGENIC PROVINCE
    • GEOLOGY OF THE LALA Fe-Cu DEPOSIT
    • PETROGRAPHY OF REE AND REE-BEARING MINERALS
    • ANALYTICAL METHODS
    • MINERAL CHEMISTRY
    • WHOLE-ROCK COMPOSITIONS OF ALTERED AND UNALTERED HOST ROCKS
    • DISCUSSION
    • SUMMARY AND CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Hydrothermal alteration of magmatic zircon related to NaCl-rich brines: Diffusion-reaction and dissolution-reprecipitation processes
  • High Spatial Resolution U-Pb Geochronology and Pb Isotope Geochemistry of Magnetite-Apatite Ore from the Pea Ridge Iron Oxide-Apatite Deposit, St. Francois Mountains, Southeast Missouri, USA
  • Mineralogy, Chemistry, and Fluid-Aided Evolution of the Pea Ridge Fe Oxide-(Y + REE) Deposit, Southeast Missouri, USA
  • In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: Constraints on fluid metasomatism
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Rare earth elements
  • mobilization
  • mineralization
  • IOCG deposit
  • Lala
  • SW China

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire