Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Vein spacing in extending, layered rock: The effect of synkinematic cementation

John N. Hooker and Richard F. Katz
American Journal of Science June 2015, 315 (6) 557-588; DOI: https://doi.org/10.2475/06.2015.03
John N. Hooker
* Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: john.hooker@earth.ox.ac.uk
Richard F. Katz
** Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: richard.katz@earth.ox.ac.uk
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Amestoy P. R.,
    2. Duff I. S.,
    3. L'Excellent J. Y.,
    4. Koster J.
    , 2001, A fully asynchronous multifrontal solver using distributed dynamic scheduling: SIAM Journal on Matrix Analysis and Applications, v. 23, n. 1, p. 15–41, doi:http://dx.doi.org/10.1137/S0895479899358194
    OpenUrlCrossRef
  2. ↵
    1. Arslan A.,
    2. Koehn D.,
    3. Passchier C. W.,
    4. Sachau T.
    , 2012, The transition from single layer to foliation boudinage: A dynamic modelling approach: Journal of Structural Geology, v. 42, p. 118–126, doi:http://dx.doi.org/10.1016/j.jsg.2012.06.005
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Bai T.,
    2. Pollard D. D.
    , 2000a, Fracture spacing in layered rocks: a new explanation based on the stress transition: Journal of Structural Geology, v. 22, n. 1, p. 43–57, doi:http://dx.doi.org/10.1016/S0191-8141(99)00137-6
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Bai T.,
    2. Pollard D. D.
    , 2000b, Closely spaced fractures in layered rocks: initiation mechanism and propagation kinematics: Journal of Structural Geology, v. 22, n. 10, p. 1409–1425, doi:http://dx.doi.org/10.1016/S0191-8141(00)00062-6
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Bai T.,
    2. Pollard D. D.,
    3. Gao H.
    , 2000, Explanation for fracture spacing in layered materials: Nature, v. 403, p. 753–756, doi:http://dx.doi.org/10.1038/35001550
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  6. ↵
    1. Balay S.,
    2. Buschelman K.,
    3. Gropp W. D.,
    4. Kaushik D.,
    5. Knepley M.,
    6. McInnes L. C.,
    7. Smith B. F.,
    8. Zhang H.
    , 2001, Portable, Extensible Toolkit for Scientific Computation: http://www.mcs.anl.gov/petsc.
  7. ↵
    1. Balay S.,
    2. Buschelman K.,
    3. Gropp W. D.,
    4. Kaushik D.,
    5. Knepley M.,
    6. McInnes L .C.,
    7. Smith B. F.,
    8. Zhang H.
    , 2004, PETSc Users' Manual: Lemont, Illinois, Argonne National Laboratory, Technical report.
    1. Becker A.,
    2. Gross M. R.
    , 1996, Mechanism for joint saturation in mechanically layered rocks: an example from southern Israel: Tectonophysics, v. 257, n. 2–4, p. 223–237, doi:http://dx.doi.org/10.1016/0040-1951(95)00142-5
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Becker S. P.,
    2. Eichhubl P.,
    3. Laubach S. E.,
    4. Reed R. M.,
    5. Lander R. H.,
    6. Bodnar R. J.
    , 2010, A 48 m.y. history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas basin: Geological Society of America Bulletin, v. 122, n. 7–8, p. 1081–1093, doi:http://dx.doi.org/10.1130/B30067.1
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Bjørlykke K.
    , 2014, Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins: Sedimentary Geology, v. 301, p. 1–14, doi:http://dx.doi.org/10.1016/j.sedgeo.2013.12.002
    OpenUrlCrossRefGeoRef
  10. ↵
    1. Bonnet E.,
    2. Bour O.,
    3. Odling N. E.,
    4. Davy P.,
    5. Main I.,
    6. Cowie P.,
    7. Berkowitz B.
    , 2001, Scaling of fracture systems in geological media: Reviews of Geophysics, v. 39, n. 3, p. 347–383, doi:http://dx.doi.org/10.1029/1999RG000074
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Bons P. D.
    , 2001, The formation of large quartz grains by rapid ascent of fluids in mobile hydrofractures: Tectonophysics, v. 336, n. 1–4, p. 1–17, doi:http://dx.doi.org/10.1016/S0040-1951(01)00090-7
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Bons P. D.,
    2. Elburg M. A.,
    3. Gomez-Rivas E.
    , 2012, A review of the formation of tectonic veins and their microstructures: Journal of Structural Geology, v. 43, p. 33–62, doi:http://dx.doi.org/10.1016/j.jsg.2012.07.005
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Boullier A.-M.,
    2. Robert F.
    , 1992, Palaeoseismic events recorded in Archean gold-quartz vein networks, Val d'Or, Abitibi, Quebec, Canada: Journal of Structural Geology, v. 14, n. 2, p. 161–179, doi:http://dx.doi.org/10.1016/0191-8141(92)90054-Z
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Brantut N.,
    2. Heap M. J.,
    3. Meredith P. G.,
    4. Baud P.
    , 2013, Time-dependent cracking and brittle creep in crustal rocks: A review: Journal of Structural Geology, v. 52, p. 17–43, doi:http://dx.doi.org/10.1016/j.jsg.2013.03.007
    OpenUrlCrossRefGeoRef
  15. ↵
    1. Caputo R.,
    2. Hancock P. L.
    , 1999, Crack-jump mechanism and its implications for stress cyclicity during extension fracturing. Journal of Geodynamics, v. 27, p. 45–60, doi:http://dx.doi.org/10.1016/S0264-3707(97)00029-X
    OpenUrlCrossRefGeoRefWeb of Science
    1. Cooke M. L.,
    2. Sino J. A.,
    3. Underwood C. A.,
    4. Rijken P.
    , 2006, Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow: Sedimentary Geology, v. 184, n. 3–4, p. 225–239, doi:http://dx.doi.org/10.1016/j.sedgeo.2005.11.004
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. Cox S. F.
    , 1987, Antitaxial crack-seal vein microstructures and their relationship to displacement paths: Journal of Structural Geology, v. 9, n. 7, p. 779–787, doi:http://dx.doi.org/10.1016/0191-8141(87)90079-4
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Curtin W. A.,
    2. Scher H.
    , 1990a, Brittle fracture in disordered materials: A spring network model: Journal of Materials Research, v. 5, n. 3, p. 535–553, doi:http://dx.doi.org/10.1557/JMR.1990.0535
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    1. Curtin W. A.,
    2. Scher H.
    , 1990b, Mechanics modeling using a spring network: Journal of Materials Research, v. 5, n. 3, p. 554–562, doi:http://dx.doi.org/10.1557/JMR.1990.0554
    OpenUrlCrossRef
  19. ↵
    1. Dietrich D.,
    2. McKenzie J. A.,
    3. Song H.
    , 1983, Origin of calcite in syntectonic veins as determined from carbon-isotope ratios: Geology, v. 11, n. 9, p. 547–551, doi:http://dx.doi.org/10.1130/0091-7613(1983)11<547:OOCISV>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Evans M. A.,
    2. Bebout G. E.,
    3. Brown C. H.
    , 2012, Changing fluid conditions during folding: An example from the central Appalachians: Tectonophysics, v. 576–577, p. 99–115, doi:http://dx.doi.org/10.1016/j.tecto.2012.03.002
    OpenUrlCrossRef
    1. Eyal Y.,
    2. Gross M. R.,
    3. Engelder T.,
    4. Becker A.
    , 2001, Joint development during fluctuation of the regional stress field in southern Israel: Journal of Structural Geology, v. 23, n. 2–3, p. 279–296, doi:http://dx.doi.org/10.1016/S0191-8141(00)00096-1
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Fall A.,
    2. Eichhubl P.,
    3. Cumella S. P.,
    4. Bodnar R. J.,
    5. Laubach S. E.,
    6. Becker S. P.
    , 2012, Testing the basin-centered gas accumulation model using fluid inclusion observations: Southern Piceance Basin, Colorado: AAPG Bulletin, v. 96, n. 12, p. 2297–2318, doi:http://dx.doi.org/10.1306/05171211149
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Fischer M. P.,
    2. Higuera-Díaz I. C.,
    3. Evans M. A.,
    4. Perry E. C.,
    5. Lefticariu L.
    , 2009, Fracture-controlled paleohydrology in a map-scale detachment fold: Insights from the analysis of fluid inclusions in calcite and quartz veins: Journal of Structural Geology, v. 31, n. 12, p. 1490–1510, doi:http://dx.doi.org/10.1016/j.jsg.2009.09.004
    OpenUrlCrossRefGeoRefWeb of Science
  23. ↵
    1. Fisher D. M.,
    2. Brantley S. L.
    , 1992, Models of quartz overgrowth and vein formation: Deformation and episodic fluid flow in an ancient subduction zone: Journal of Geophysical Research-Solid Earth, v. 97, n. B13, p. 20,043–20,061, doi:http://dx.doi.org/10.1029/92JB01582
    OpenUrlCrossRef
  24. ↵
    1. Fisher D. M.,
    2. Brantley S. L.
    , 2014, The role of silica redistribution in the evolution of slip instabilities along subduction interfaces: Constraints from the Kodiak accretionary complex, Alaska: Journal of Structural Geology, v. 69, Part B, p. 395–414, doi:http://dx.doi.org/10.1016/j.jsg.2014.03.010
    OpenUrlCrossRefGeoRef
  25. ↵
    1. Gale J. F. W.,
    2. Holder J.
    , 2010, Natural fractures in some US shales and their importance for gas production: Geological Society, London, Petroleum Geology Conference Series, v. 7, p. 1131–1140, doi:http://dx.doi.org/10.1144/0071131
    OpenUrlCrossRefGeoRef
    1. Gillespie P. A.,
    2. Howard C. B.,
    3. Walsh J. J.,
    4. Watterson J.
    , 1993, Measurement and characterisation of spatial distribution of fractures: Tectonophysics, v. 226, n. 1–4, p. 113–141, doi:http://dx.doi.org/10.1016/0040-1951(93)90114-Y
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Gillespie P. A.,
    2. Johnston J. D.,
    3. Loriga M. A.,
    4. McCaffrey K. J. W.,
    5. Walsh J. J.,
    6. Watterson J.
    , 1999, Influence of layering on vein systematics in line samples: Geological Society, London, Special Publications, v. 155, p. 35–56, doi:http://dx.doi.org/10.1144/GSL.SP.1999.155.01.05
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Gillespie P. A.,
    2. Walsh J. J.,
    3. Watterson J.,
    4. Bonson G. C.,
    5. Manzocchi T.
    , 2001, Scaling relationships of joint and vein arrays from The Burren, Co. Clare, Ireland: Journal of Structural Geology, v. 23, n. 2–3, p. 183–201, doi:http://dx.doi.org/10.1016/S0191-8141(00)00090-0
    OpenUrlCrossRefGeoRefWeb of Science
    1. Gomez L. A.
    , ms, 2007, Characterization of the spatial arrangement of opening-mode fractures: Austin, Texas, The University of Texas at Austin, Ph. D. thesis, 844 p.
    1. Gross M. R.,
    2. Engelder T.
    , 1995, Strain accommodated by brittle failure in adjacent units of the Monterey Formation, U.S.A.: scale effects and evidence for uniform displacement boundary conditions: Journal of Structural Geology, v. 17, n. 9, p. 1303–1318, doi:http://dx.doi.org/10.1016/0191-8141(95)00011-2
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Gross M. R.,
    2. Fischer M. P.,
    3. Engelder T.,
    4. Greenfield R. J.
    , 1995, Factors controlling joint spacing in interbedded sedimentary rocks: integrating numerical models with field observations from the Monterey Formation, USA, Ameen, M. S., editor, Fractography: Fracture Topography as a Tool in Fracture Mechanics and Stress Analysis: Geological Society, London, Special Publications, v. 92, p. 215–233, doi:http://dx.doi.org/10.1144/GSL.SP.1995.092.01.12
    OpenUrlAbstract/FREE Full Text
    1. Gross M. R.,
    2. Bahat D.,
    3. Becker A.
    , 1997, Relations between jointing and faulting based on fracture-spacing ratios and fault-slip profiles: A new method to estimate strain in layered rocks: Geology, v. 25, n. 10, p. 887–890, doi:http://dx.doi.org/10.1130/0091-7613(1997)025<0887:RBJAFB>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Guerriero V.,
    2. Iannace A.,
    3. Mazzoli S.,
    4. Parente M.,
    5. Vitale S.,
    6. Giorgioni M.
    , 2010, Quantifying uncertainties in multi-scale studies of fractured reservoir analogues: Implemented statistical analysis of scan line data from carbonate rocks: Journal of Structural Geology, v. 32, n. 9, p. 1271–1278, doi:http://dx.doi.org/10.1016/j.jsg.2009.04.016
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Guerriero V.,
    2. Vitale S.,
    3. Ciarcia S.,
    4. Mazzoli S.
    , 2011, Improved statistical multi-scale analysis of fractured reservoir analogues: Tectonophysics, v. 504, n. 1–4, p. 14–24, doi:http://dx.doi.org/10.1016/j.tecto.2011.01.003
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Hobbs D. W.
    , 1967, The formation of tension joints in sedimentary rock: an explanation: Geological Magazine, v. 104, n. 6, p. 550–556.
    OpenUrlAbstract
  31. ↵
    1. Hooker J. N.,
    2. Gale J. F. W.,
    3. Gomez L. A.,
    4. Laubach S. E.,
    5. Marrett R.,
    6. Reed R. M.
    , 2009, Aperture-size scaling variations in a low-strain opening-mode fracture set, Cozzette Sandstone, Colorado: Journal of Structural Geology, v. 31, n. 7, p. 707–718, doi:http://dx.doi.org/10.1016/j.jsg.2009.04.001
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. Hooker J. N.,
    2. Gomez L. A.,
    3. Laubach S. E.,
    4. Gale J. F. W.,
    5. Marrett R.
    , 2012, Effects of diagenesis (cement precipitation) during fracture opening on fracture aperture-size scaling in carbonate rocks: Geological Society, London, Special Publications, v. 370, p. 187–206, doi:http://dx.doi.org/10.1144/SP370.9
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Hooker J. N.,
    2. Laubach S. E.,
    3. Marrett R.
    , 2013, Fracture aperture-size—frequency, spatial distribution, and growth processes in strata-bounded and non-strata-bounded fractures, Cambrian Mesón Group, NW Argentina: Journal of Structural Geology, v. 54, p. 54–71, doi:http://dx.doi.org/10.1016/j.jsg.2013.06.011
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Hooker J. N.,
    2. Laubach S. E.,
    3. Marrett R.
    , 2014, A universal power-law scaling exponent for fracture apertures in sandstone: Geological Society of America Bulletin, v. 126, n. 9–10, p. 1340–1362, doi:http://dx.doi.org/10.1130/B30945.1
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Hooker J. N.,
    2. Larson T. E.,
    3. Eakin A.,
    4. Laubach S. E.,
    5. Eichhubl P.,
    6. Fall A.,
    7. Marrett R.
    , 2015, Fracturing and fluid-flow in a sub-décollement sandstone; or, A leak in the basement: Journal of the Geological Society, London, v. 172, p. 428–442, doi:http://dx.doi.org/10.1144/jgs2014-128
    OpenUrlAbstract/FREE Full Text
    1. Huang Q.,
    2. Angelier J.
    , 1989, Fracture spacing and its relation to bed thickness: Geological Magazine, v. 126, n. 4, p. 355–362, doi:http://dx.doi.org/10.1017/S0016756800006555
    OpenUrlAbstract
    1. Ji S.,
    2. Saruwatari K.
    , 1998, A revised model for the relationship between joint spacing and layer thickness: Journal of Structural Geology, v. 20, n. 11, p. 1495–1508, doi:http://dx.doi.org/10.1016/S0191-8141(98)00042-X
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Koehn D.,
    2. Arnold J.,
    3. Passchier C. W.
    , 2005, Fracture and vein patterns as indicators of deformation history: a numerical study: Geological Society, London, Special Publications, v. 243, p. 11–24, doi:http://dx.doi.org/10.1144/GSL.SP.2005.243.01.03
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Ladeira F. L.,
    2. Price N. J.
    , 1981, Relationship between fracture spacing and bed thickness: Journal of Structural Geology, v. 3, n. 2, p. 179–183, doi:http://dx.doi.org/10.1016/0191-8141(81)90013-4
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Lander R. H.,
    2. Laubach S. E.
    , 2015, Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones: Geological Society of America Bulletin, v. 127, n. 3–4, p. 516–538, doi:http://dx.doi.org/10.1130/B31092.1
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Lander R. H.,
    2. Larese R. E.,
    3. Bonnell L. M.
    , 2008, Toward more accurate quartz cement models: The importance of euhedral versus non-euhedral growth rates: AAPG Bulletin, v. 92, n. 11, p. 1537–1563, doi:http://dx.doi.org/10.1306/07160808037
    OpenUrlAbstract/FREE Full Text
    1. Larsen B.,
    2. Grunnaleite I.,
    3. Gudmundsson A.
    , 2010, How fracture systems affect permeability development in shallow-water carbonate rocks: An example from the Gargano Peninsula, Italy: Journal of Structural Geology, v. 32, n. 9, p. 1212–1230, doi:http://dx.doi.org/10.1016/j.jsg.2009.05.009
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Laubach S. E.
    , 1997, A method to detect natural fracture strike in sandstones: AAPG Bulletin, v. 81, n. 4, p. 604–623.
    OpenUrlAbstract
  41. ↵
    1. Laubach S. E.
    , 2003, Practical approaches to identifying sealed and open fractures: AAPG Bulletin, v. 87, n. 4, p. 561–579, doi:http://dx.doi.org/10.1306/11060201106
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Laubach S. E.,
    2. Lander R. H.,
    3. Bonnell L. M.,
    4. Olson J. E.,
    5. Reed R. M.
    , 2004, Opening histories of fractures in sandstone: Geological Society, London, Special Publications, v. 231, p. 1–9, doi:http://dx.doi.org/10.1144/GSL.SP.2004.231.01.01
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Lawn B. R.,
    2. Wilshaw T. R.
    , 1975, Fracture of brittle solids: Cambridge, Cambridge University Press, 204 p.
    1. Li L. C.,
    2. Tang C. A.,
    3. Wang S. Y.
    , 2012, A numerical investigation of fracture infilling and spacing in layered rocks subjected to hydro-mechanical loading: Rock Mechanics and Rock Engineering, v. 45, n. 5, p. 753–765, doi:http://dx.doi.org/10.1007/s00603-011-0194-x
    OpenUrlCrossRefGeoRef
    1. Marrett R.
    , 1996, Aggregate properties of fracture populations: Journal of Structural Geology, v. 18 n. 2–3, p. 169–178, doi:http://dx.doi.org/10.1016/S0191-8141(96)80042-3
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Marrett R.,
    2. Ortega O. J.,
    3. Kelsey C. M.
    , 1999, Extent of power-law scaling for natural fractures in rock: Geology, v. 27, n. 9, p. 799–802, doi:http://dx.doi.org 10.1130/0091-7613(1999)027<0799:EOPLSF>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Mazzarini F.,
    2. Isola I.,
    3. Ruggieri G.,
    4. Boschi C.
    , 2010, Fluid circulation in the upper brittle crust: Thickness distribution, hydraulic transmissivity fluid inclusion and isotopic data of veins hosted in the Oligocene sandstones of the Macigno Formation in southern Tuscany, Italy: Tectonophysics, v. 493, n. 1–2, p. 118–138, doi:http://dx.doi.org/10.1016/j.tecto.2010.07.012
    OpenUrlCrossRefGeoRefWeb of Science
    1. McQuillan H.
    , 1973, Small-scale fracture density in Asmari Formation of southwest Iran and its relation to bed thickness and structural setting: AAPG Bulletin, v. 57, n. 12, p. 2367–2385.
    OpenUrlAbstract
  46. ↵
    1. Means W. D.,
    2. Li T.
    , 2001, A laboratory simulation of fibrous veins: some first observations: Journal of Structural Geology, v. 23, n. 6–7, p. 857–863, doi:http://dx.doi.org/10.1016/S0191-8141(00)00158-9
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Monette L.,
    2. Anderson M. P.
    , 1994, Elastic and fracture properties of the two-dimensional triangular and square lattices: Modelling and Simulation in Materials Science and Engineering, v. 2, p. 53–66, doi:http://dx.doi.org/10.1088/0965-0393/2/1/004
    OpenUrlCrossRef
    1. Narr W.,
    2. Suppe J.
    , 1991, Joint spacing in sedimentary rocks: Journal of Structural Geology, v. 13, n. 9, p. 1037–1048, doi:http://dx.doi.org/10.1016/0191-8141(91)90055-N
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Buchanan J. G.,
    2. Buchanan P. G.
    1. Nemčok M.,
    2. Gayer R.,
    3. Miliorizos M.
    , 1995, Structural analysis of the inverted Bristol Channel basin: implications for the geometry and timing of fracture porosity, in Buchanan J. G., Buchanan P. G., editors, Basin Inversion: Geological Society, London, Special Publications, v. 88, p. 355–392, doi:http://dx.doi.org/10.1144/GSL.SP.1995.088.01.20
    OpenUrlCrossRef
  49. ↵
    1. Nüchter J.-A.,
    2. Stöckhert B.
    , 2007, Vein quartz microfabrics indicating progressive evolution of fractures into cavities during postseismic creep in the middle crust: Journal of Structural Geology, v. 29, n. 9, p. 1445–1462, doi:http://dx.doi.org/10.1016/j.jsg.2007.07.011
    OpenUrlCrossRefGeoRefWeb of Science
    1. Odonne F.,
    2. Lézin C.,
    3. Massonnat G.,
    4. Escadeillas G.
    , 2007, The relationship between joint aperture, vertical dimension and carbonate stratification: An example from the Kimmeridgian limestones of Pointe-du-Chay (France): Journal of Structural Geology, v. 29, n. 5, p. 746–758, doi:http://dx.doi.org/10.1016/j.jsg.2006.12.005
    OpenUrlCrossRefGeoRefWeb of Science
    1. Ogata K.,
    2. Senger K.,
    3. Braathen A.,
    4. Tveranger J.
    , 2014, Fracture corridors as seal-bypass systems in siliciclastic reservoir-cap rock successions: Field-based insights from the Jurassic Entrada Formation (SE Utah, USA): Journal of Structural Geology, v. 66, p. 162–187, doi:http://dx.doi.org/10.1016/j.jsg.2014.05.005
    OpenUrlCrossRefWeb of Science
  50. ↵
    1. Olson J. E.
    , 1993, Joint pattern development: Effects of subcritical crack-growth and mechanical crack interaction: Journal of Geophysical Research-Solid Earth, v. 98, n. B7, p. 12,251–12,265, doi:http://dx.doi.org/10.1029/93JB00779
    OpenUrlCrossRef
  51. ↵
    1. Cosgrove J W.,
    2. Engelder T.
    1. Olson J. E.
    , 2004, Predicting fracture swarms: The influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock, in Cosgrove J W., Engelder T., editors, The Initiation, Propagation, and Arrest of Joints and Other Fractures: Geological Society, London, Special Publications, v. 231, p. 73–88, doi:http://dx.doi.org/10.1144/GSL.SP.2004.231.01.05
    OpenUrlCrossRef
    1. Ortega O. J.,
    2. Marrett R.
    , 2000, Prediction of macrofracture properties using microfacture information, Mesaverde Group sandstones, San Juan basin, New Mexico: Journal of Structural Geology, v. 22, n. 5, p. 571–588, doi:http://dx.doi.org/10.1016/S0191-8141(99)00186-8
    OpenUrlCrossRefGeoRefWeb of Science
    1. Ortega O. J.,
    2. Marrett R. A.,
    3. Laubach S. E.
    , 2006, A scale-independent approach to fracture intensity and average spacing measurement: AAPG Bulletin, v. 90, n. 2, p. 193–208, doi:http://dx.doi.org/10.1306/08250505059
    OpenUrlAbstract/FREE Full Text
    1. Ortega O. J.,
    2. Gale J. F. W.,
    3. Marrett R.
    , 2010, Quantifying diagenetic and stratigraphic controls on fracture intensity in platform carbonates: An example from the Sierra Madre Oriental, northeast Mexico: Journal of Structural Geology, v. 32, n. 12, p. 1943–1959, doi:http://dx.doi.org/10.1016/j.jsg.2010.07.004
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Ostoja-Starzewski M.
    , 2002, Lattice models in micromechanics: Applied Mechanics Reviews, v. 55, n. 1, p. 35–60, doi:http://dx.doi.org/10.1115/1.1432990
    OpenUrlCrossRef
  53. ↵
    1. Cosgrove J. W.,
    2. Engelder T.
    1. Peacock D. C. P.
    , 2004, Differences between joints and veins using the example of the Jurassic limestones of Somerset, in Cosgrove J. W., Engelder T., editors, The Initiation, Propagation, and Arrest of Joints and other Fractures: Geological Society, London, Special Publications, v. 231, p. 209–221, doi:http://dx.doi.org/10.1144/GSL.SP.2004.231.01.12
    OpenUrlCrossRef
  54. ↵
    1. Price N. J.
    , 1966, Fault and joint development in brittle and semi-brittle rock: Oxford, Pergamon Press, 176 p.
  55. ↵
    1. Putz-Perrier M. W.,
    2. Sanderson D. J.
    , 2008, Spatial distribution of brittle strain in layered sequences: Journal of Structural Geology, v. 30, n. 1, p. 50–64, doi:http://dx.doi.org/10.1016/j.jsg.2007.10.005
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Ramsay J. G.
    , 1980, The crack-seal mechanism of rock deformation: Nature, v. 284, p. 135–139, doi:http://dx.doi.org/10.1038/284135a0
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Rives T.,
    2. Razack M.,
    3. Petit J.-P.,
    4. Rawnsley K. D.
    , 1992, Joint spacing: analogue and numerical simulations: Journal of Structural Geology, v. 14, n. 8–9, p. 925–937, doi:http://dx.doi.org/10.1016/0191-8141(92)90024-Q
    OpenUrlCrossRef
    1. Ruf J. C.,
    2. Rust K. A.,
    3. Engelder T.
    , 1998, Investigating the effect of mechanical discontinuities on joint spacing: Tectonophysics, v. 295, n. 1–2, p. 245–257, doi:http://dx.doi.org/10.1016/S0040-1951(98)00123-1
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    1. Rusk B.,
    2. Reed M.
    , 2002, Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana: Geology, v. 30, n. 8, p. 727–730, doi:http://dx.doi.org/10.1130/0091-7613(2002)030<0727:SEMCAO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Sample J. C.
    , 2010, Stable isotope constraints on vein formation and fluid evolution along a recent thrust fault in the Cascadia accretionary wedge: Earth and Planetary Science Letters, v. 293, n. 3–4, p. 300–312, doi:http://dx.doi.org/10.1016/j.epsl.2010.02.044
    OpenUrlCrossRefGeoRef
  60. ↵
    1. Savalli L.,
    2. Engelder T.
    , 2005, Mechanisms controlling rupture shape during subcritical growth of joints in layered rocks: Geological Society of America Bulletin, v. 117, n. 3–4, p. 436–449, doi:http://dx.doi.org/10.1130/B25368.1
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Schöpfer M. P. J.,
    2. Arslan A.,
    3. Walsh J. J.,
    4. Childs C.
    , 2011, Reconciliation of contrasting theories for fracture spacing in layered rocks: Journal of Structural Geology, v. 33, n. 4, p. 551–565, doi:http://dx.doi.org10.1016/j.jsg.2011.01.008
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Schulz B.,
    2. Audren C.,
    3. Treboulet C.
    , 2002, Oxygen isotope record of fluid-rock-SiO2 interaction during Variscan progressive deformation and quartz veining in the meta-volcanosediments of Belle-Ile (Southern Brittany): Journal of Structural Geology, v. 24, n. 8, p. 1281–1297, doi:http://dx.doi.org/10.1016/S0191-8141(01)00135-3
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Secor D. T. Jr..
    , 1965, Role of fluid pressure in jointing: American Journal of Science: v. 263, n. 8, p. 633–646, doi:http://dx.doi.org/10.2475/ajs.263.8.633
    OpenUrlAbstract
  64. ↵
    1. Sibson R. H.
    , 1992, Implications of fault-valve behaviour for rupture nucleation and recurrence: Tectonophysics, v. 211, n. 1–4, p. 283–293, doi:http://dx.doi.org/10.1016/0040-1951(92)90065-E
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Spence G. H.,
    2. Redfern J.,
    3. Aguilera R.,
    4. Bevan T. G.,
    5. Cosgrove J. W.,
    6. Couples G. D.,
    7. Daniel J.-M.
    1. Spence G. H.,
    2. Finch E.
    , 2014, Influences of nodular chert rhythmites on natural fracture networks in carbonates: an outcrop and two-dimensional discrete element modelling study, in Spence G. H., Redfern J., Aguilera R., Bevan T. G., Cosgrove J. W., Couples G. D., Daniel J.-M., editors, Advances in the Study of Fractured Reservoirs: Geological Society, London, Special Publications, v. 374, p. 211–249, doi:http://dx.doi.org/10.1144/SP374.18
    OpenUrlCrossRef
  66. ↵
    1. Tang C. A.
    , 1997, Numerical simulation of progressive rock failure and associated seismicity: International Journal of Rock Mechanics and Mining Sciences, v. 34, n. 2, p. 249–261, doi:http://dx.doi.org/10.1016/S0148-9062(96)00039-3
    OpenUrlCrossRefGeoRef
  67. ↵
    1. Tang C. A.,
    2. Liang Z. Z.,
    3. Yang Y. B.,
    4. Chang X.,
    5. Tao X.,
    6. Wang D. G.,
    7. Zhang J. X.,
    8. Liu J. S.,
    9. Zhu W. C.,
    10. Elsworth D.
    , 2008, Fracture spacing in layered materials: A new explanation based on two-dimensional failure process modeling: American Journal of Science, v. 308, n. 1, p. 49–72, doi:http://dx.doi.org/10.2475/01.2008.02
    OpenUrlAbstract/FREE Full Text
    1. Van Noten K.,
    2. Sintubin M.
    , 2010, Linear to non-linear relationship between vein spacing and layer thickness in centimetre- to decimetre-scale siliciclastic multilayers from the High-Ardenne slate belt (Belgium, Germany): Journal of Structural Geology, v. 32, n. 3, p. 377–391, doi:http://dx.doi.org/10.1016/j.jsg.2010.01.011
    OpenUrlCrossRefGeoRefWeb of Science
  68. ↵
    1. Vass A.,
    2. Koehn D.,
    3. Toussaint R.,
    4. Ghani I.,
    5. Piazolo S.
    , 2014, The importance of fracture-healing on the deformation of fluid-filled layered systems: Journal of Structural Geology, v. 67, Part A, p. 94–106, doi:http://dx.doi.org/10.1016/j.jsg.2014.07.007
    OpenUrlCrossRefGeoRef
  69. ↵
    1. Virgo S.,
    2. Abe S.,
    3. Urai J.
    , 2013, Extension fracture propagation in rock with veins: Insight into the crack-seal process using Discrete Element Method modelling: Journal of Geophysical Research-Solid Earth, v. 118, n. 10, p. 5236–5251, doi:http://dx.doi.org/10.1002/2013JB010540
    OpenUrlCrossRefWeb of Science
  70. ↵
    1. Virgo S.,
    2. Abe S.,
    3. Urai J.
    , 2014, The evolution of crack seal vein and fracture networks in an evolving stress field: Insights from Discrete Element Models of fracture sealing: Journal of Geophysical Research Solid Earth-Solid Earth, v. 119, n. 12, p. 8708–8727, doi:http://dx.doi.org/10.1002/2014JB011520
    OpenUrlCrossRef
  71. ↵
    1. Walderhaug O.
    , 1996, Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs: AAPG Bulletin, v. 80, n. 5, p. 731–745.
    OpenUrlAbstract
  72. ↵
    1. Wiltschko D. V.,
    2. Morse J. W.
    , 2001, Crystallization pressure versus “crack-seal” as the mechanism for banded veins: Geology, v. 29, n. 1, p. 79–82, doi:http://dx.doi.org/10.1130/0091-7613(2001)029<0079:CPVCSA>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Zahm C. K.,
    2. Zahm L. C.,
    3. Bellian J.A.
    , 2010, Integrating fracture prediction using sequence stratigraphy within a carbonate damage zone, Texas, USA: Journal of Structural Geology, v. 32, n. 9, p. 1363–1374, doi:http://dx.doi.org/10.1016/j.jsg.2009.05.012
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 315 (6)
American Journal of Science
Vol. 315, Issue 6
1 Jun 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Vein spacing in extending, layered rock: The effect of synkinematic cementation
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 12 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Vein spacing in extending, layered rock: The effect of synkinematic cementation
John N. Hooker, Richard F. Katz
American Journal of Science Jun 2015, 315 (6) 557-588; DOI: 10.2475/06.2015.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Vein spacing in extending, layered rock: The effect of synkinematic cementation
John N. Hooker, Richard F. Katz
American Journal of Science Jun 2015, 315 (6) 557-588; DOI: 10.2475/06.2015.03
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • PREVIOUS WORK
    • SPRING-LATTICE MODEL
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Degradation of fracture porosity in sandstone by carbonate cement, Piceance Basin, Colorado, USA
  • Fluid evolution in fracturing black shales, Appalachian Basin
  • Sedimentary facies control on mechanical and fracture stratigraphy in turbidites
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • fracture spacing
  • fracture model
  • vein
  • crack-seal
  • diagenesis

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire