Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Proposal for a continent ‘Itsaqia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record

Allen P. Nutman, Vickie C. Bennett and Clark R.L. Friend
American Journal of Science June 2015, 315 (6) 509-536; DOI: https://doi.org/10.2475/06.2015.01
Allen P. Nutman
* GeoQuEST Research Centre, School of Earth & Environmental Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: anutman@uow.edu.au
Vickie C. Bennett
** Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clark R.L. Friend
*** Glendale, Tiddington, Oxon, OX9 2LQ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Windley B. F.
    1. Allaart J. H.
    , 1976, The pre-3760 m.y. old supracrustal rocks of the Isua area, central West Greenland, and the associated occurrence of quartz-banded ironstone, in Windley B. F., editor, The Early History of the Earth: London, Wiley, p. 177–189.
  2. ↵
    1. Amelin Y.,
    2. Kamo S. L.,
    3. Lee D. C.
    , 2011, Evolution of early crust in chondritic or non-chondritic Earth inferred from U-Pb and Lu-Hf data for chemically abraded zircon from the Itsaq Gneiss Complex, West Greenland: Canadian Journal of Earth Sciences, v. 48, n. 2, p. 141–160, doi:http://dx.doi.org/10.1139/E10-091
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Anhaeusser C. R.
    , 1973, The evolution of the early Precambrian crust of southern Africa: Philosophical Transactions of the Royal Society, London, v. A273, n. 1235, p. 359–388, doi:http://dx.doi.org/10.1098/rsta.1973.0006
    OpenUrlCrossRefWeb of Science
  4. ↵
    1. Arndt N. T.
    , 2013, The formation and evolution of continental crust: Geochemical Perspectives, v. 2, n. 3, p. 405–528, doi:http://dx.doi.org/10.7185/geochempersp.2.3
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Baadsgaard H.,
    2. Nutman A. P.,
    3. Bridgwater D.
    , 1986, Geochronology and isotope geochemistry of the early Archaean Amîtsoq gneisses of the Isukasia area, southern West Greenland: Geochimica et Cosmochimica Acta, v. 50, n. 10, p. 2173–2183, doi:http://dx.doi.org/10.1016/0016-7037(86)90072-4
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Bell E. A.,
    2. Harrison T. M.,
    3. McCulloch M. T.,
    4. Young E. D.
    , 2011, Early Archean crustal evolution of the Jack Hills source terrane inferred from Lu-Hf, 207Pb/206Pb and δ18O systematics of Jack Hills zircons: Geochimica et Cosmochimica Acta, v. 75, n. 17, p. 4816–4829, doi:http://dx.doi.org/10.1016/j.gca.2011.06.007
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Bennett V. C.,
    2. Nutman A. P.,
    3. McCulloch M. T.
    , 1993, Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth: Earth and Planetary Science Letters, v. 119, n. 3, p. 299–317, doi:http://dx.doi.org/10.1016/0012-821X(93)90140-5
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Bennett V. C.,
    2. Brandon A. D.,
    3. Nutman A. P.
    , 2007, Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics: Science, v. 318, n. 5858, p. 1907–1910, doi:http://dx.doi.org/10.1126/science.1145928
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Bibikova E. V.,
    2. Williams I. S.
    , 1990, Ion microprobe U-Th-Pb isotopic studies of zircons from three Early Precambrian areas in the USSR: Precambrian Research, v. 48, n. 3, p. 203–221, doi:http://dx.doi.org/10.1016/0301-9268(90)90009-F
    OpenUrlCrossRefGeoRefWeb of Science
  10. ↵
    1. Bibikova E.,
    2. Claesson S.,
    3. Fedotova A.,
    4. Artemenko G.,
    5. Ilyinsky L.
    , 2010, Early Archean crust of the Middle Dnepr and Azov domains, Ukrainian Shield – evidence from ages of detrital zircons in Mesoarchean greenstone belts: American Journal of Science, v. 310, p. 1595–1622, doi:http://dx.doi.org/10.2475/10.2010.13
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Bickle M. J.
    , 1986, Implications of melting for stabilization of the lithosphere and heat loss in the Archean: Earth and Planetary Science Letters, v. 80, n. 3–4, p. 314–324, doi:http://dx.doi.org/10.1016/0012-821X(86)90113-5
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Black L. P.,
    2. Gale N. H.,
    3. Moorbath S.,
    4. Pankhurst R. J.,
    5. McGregor V. R.
    , 1971, Isotopic dating of very early Precambrian amphibolite facies gneisses from the Godthåb district, West Greenland: Earth and Planetary Science Letters, v. 12, n. 3, p. 245–259, doi:http://dx.doi.org/10.1016/0012-821X(71)90208-1
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Black L. P.,
    2. Williams I. S.,
    3. Compston W.
    , 1986, Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica: Contributions to Mineralogy and Petrology, v. 94, n. 4, p. 427–437, doi:http://dx.doi.org/10.1007/BF00376336
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Cook F.,
    2. Erdmer P.
    1. Bleeker W.,
    2. Stern R.
    , 1997, The Acasta gneisses: an imperfect sample of Earth's oldest crust, in Cook F., Erdmer P., editors, Slave-Northern Cordillera lithospheric evolution (SNORCLE) transect and cordilleran tectonics workshop meeting: Lithosphere Report, p. 32–35.
  15. ↵
    1. Bohlar R.,
    2. Kamber B. S.,
    3. Moorbath S.,
    4. Fedo C. M.,
    5. Whitehouse M. J.
    , 2004, Characterisation of early Archaean chemical sediments by trace element signatures: Earth and Planetary Science Letters, v. 222, n. 1, p. 43–60, doi:http://dx.doi.org/10.1016/j.epsl.2004.02.016
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. Bohlar R.,
    2. Kamber B. S.,
    3. Moorbath S.,
    4. Whitehouse M. J.,
    5. Collerson K. D.
    , 2005, Chemical characterization of earth's most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland: Geochimica et Cosmochimica Acta, v. 69, n. 6, p. 1553–1573, doi:http://dx.doi.org/10.1016/j.gca.2004.09.023
    OpenUrlCrossRef
  17. ↵
    1. Bowring S. A.,
    2. Williams I. S.
    , 1999, Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada: Contributions to Mineralogy and Petrology, v. 134, n. 1, p. 3–16, doi:http://dx.doi.org/10.1007/s004100050465
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    1. Bowring S. A.,
    2. Williams I. S.,
    3. Compston W.
    , 1989, 3.96 Ga gneisses from the Slave province, Northwest Territories, Canada: Geology, v. 17, n. 11, p. 971–975, doi:http://dx.doi.org/10.1130/0091-7613(1989)017<0971:GGFTSP>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Brandl P. A.,
    2. Regelous M.,
    3. Beier C.,
    4. Haase K. M.
    , 2013, High mantle temperatures following rifting caused by continental insulation: Nature Geoscience, v. 6, p. 391–394, doi:http://dx.doi.org/10.1038/ngeo1758
    OpenUrlCrossRefWeb of Science
  20. ↵
    1. Buick R.,
    2. Thornett J. R.,
    3. McNaughton N. J.,
    4. Smith J. B.,
    5. Barley M. E.,
    6. Savage M.
    , 1995, Record of emergent continental crust ∼3.5 billion years ago in the Pilbara Craton of Australia: Nature, v. 375, p. 574–577, doi:http://dx.doi.org/10.1038/375574a0
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Burke K.
    , 2011, Plate tectonics, the Wilson cycle, and mantle plumes; geodynamics from the top: Annual Review of Earth and Planetary Sciences, v. 39, p. 1–29, doi:http://dx.doi.org/10.1146/annurev-earth-040809-152521
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Burke K.,
    2. Cannon J. M.
    , 2014, Plume-plate interaction: Canadian Journal of Earth Sciences, v. 51, n. 3, p. 208–221, doi:http://dx.doi.org/10.1139/cjes-2013-0115
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Campbell I. H.,
    2. Griffiths R. W.,
    3. Hill R. I.
    , 1989, Melting in an Archaean mantle plume: heads it's basalts and tails it's komatiites: Nature, v. 339, p. 697–699, doi:http://dx.doi.org/10.1038/339697a0
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Cates N. L.,
    2. Mojzsis S. J.
    , 2007, Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec: Earth and Planetary Science Letters, v. 255, n. 1–2, p. 9–21, doi:http://dx.doi.org/10.1016/j.epsl.2006.11.034
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Cates N. L.,
    2. Ziegler K.,
    3. Schmitt A. K.,
    4. Mojzsis S. J.
    , 2013, Reduced, reused and recycled: Detrital zircons define a maximum age for the Eoarchean (ca. 3750–3780 Ma) Nuvvuagittuq Supracrustal Belt, Quebec (Canada): Earth and Planetary Science Letters, v. 362, p. 283–293, doi:http://dx.doi.org/10.1016/j.epsl.2012.11.054
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V. C.
    1. Cavosie A. J.,
    2. Valley J. W.,
    3. Wilde S. A.
    , 2007, The oldest terrestrial mineral record: A review of 4400-4000 Ma detrital zircons from Jack Hills, Western Australia, in van Kranendonk M. J., Smithies R. H., Bennett V. C., editors, Earth's Oldest Rocks: Amsterdam, Elsevier, Developments in Precambrian Geology, v. 15, p. 91–111, doi:http://dx.doi.org/10.1016/S0166-2635(07)15025-8
    OpenUrlCrossRef
  27. ↵
    1. van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V. C.
    1. Champion D. C.,
    2. Smithies R. H.
    , 2007, Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: Implications for Early Archean crustal growth, in van Kranendonk M. J., Smithies R. H., Bennett V. C., editors, Earth's Oldest Rocks: Amsterdam, Elsevier, Developments in Precambrian Geology, v. 15, p. 369–409, doi:http://dx.doi.org/10.1016/S0166-2635(07)15043-X
    OpenUrlCrossRef
  28. ↵
    1. Gee D. G.,
    2. Stephenson R. A.
    1. Claesson S.,
    2. Bibikova E.,
    3. Bogdanova S.,
    4. Skobelev V.
    , 2006, Archaean terranes, Palaeoproterozoic reworking and accretion in the Ukrainian Shield, East-European Craton, in Gee D. G., Stephenson R. A., editors, European Lithosphere Dynamics: The Geological Society, London, Memoirs, v. 32, p. 645–654, doi:http://dx.doi.org/10.1144/GSL.MEM.2006.32.01.38
    OpenUrlCrossRef
  29. ↵
    1. Collerson K. D.
    , 1983, Ion microprobe zircon geochronology of the Uivak gneisses: Implications for the evolution of early terrestrial crust in the North Atlantic: Lunar and Planetary Science Institute Technical Report, v. 83–03, p. 28–33.
    OpenUrl
  30. ↵
    1. Collerson K. D.,
    2. Kerr A.,
    3. Vocke R. D.,
    4. Hanson G. N.
    , 1982, Reworking of sialic crust as represented in late Archean-age gneisses, northern Labrador: Geology, v. 10, n. 4, p. 202–208, doi:http://dx.doi.org/10.1130/0091-7613(1982)10<202:ROSCAR>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Coltice N.,
    2. Bertrand H.,
    3. Rey P.,
    4. Jourdan F.,
    5. Phillips B. R.,
    6. Ricard Y.
    , 2009, Global warming of the mantle beneath continents back to the Archaean: Gondwana Research, v. 15, n. 3–4, p. 254–266, doi:http://dx.doi.org/10.1016/j.gr.2008.10.001
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. Compston W.,
    2. Pidgeon R. T.
    , 1986, Jack Hills, evidence of more very old detrital zircons in Western Australia: Nature, v. 321, p. 766–769, doi:http://dx.doi.org/10.1038/321766a0
    OpenUrlCrossRefGeoRef
  33. ↵
    1. Condie K. C.
    , 1993, Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales: Chemical Geology, v. 104, n. 1–4, 1–37, doi:http://dx.doi.org/10.1016/0009-2541(93)90140-E
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Crowley J. L.
    , 2003, U-Pb geochronology of 3810-3630 Ma granitoid rocks south of the Isua greenstone belt, southern West Greenland: Precambrian Research, v. 126, n. 3–4, p. 235–257, doi:http://dx.doi.org/10.1016/S0301-9268(03)00097-4
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Crowley J. L.,
    2. Myers J. S.,
    3. Dunning G. R.
    , 2002, Timing and nature of multiple 3700-3600 Ma tectonic events in intrusive rocks north of the Isua greenstone belt, southern West Greenland: Geological Society of America Bulletin, v. 114, n. 10, p. 1311–1325, doi:http://dx.doi.org/10.1130/0016-7606(2002)114<1311:TANOMM>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Dauphas N.,
    2. Cates N. L.,
    3. Mojzsis S. J.,
    4. Busigny V.
    , 2007, Identification of chemical sedimentary protoliths using iron isotopes in the ∼3750 Ma Nuvvuagittuq supracrustal belt, Canada: Earth and Planetary Science Letters, v. 254, n. 3–4, p. 358–376, doi:http://dx.doi.org/10.1016/j.epsl.2006.11.042
    OpenUrlCrossRefGeoRefWeb of Science
  37. ↵
    1. David J.,
    2. Godin L.,
    3. Stevenson R.,
    4. O'Neil J.,
    5. Francis D.
    , 2009, U-Pb ages (3.8-2.7 Ga) and Nd isotope data from the newly identified Eoarchean Nuvvuagittuq supracrustal belt, Superior Craton, Canada: Geological Society of America Bulletin, v. 121, p. 150–163, doi:http://dx.doi.org/10.1130/B26369.1
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Dilek Y.,
    2. Polat A.
    , 2008, Suprasubduction zone ophiolites and Archean tectonics: Geology, v. 36, n. 5, p. 431–432, doi:http://dx.doi.org/10.1130/Focus052008.1
    OpenUrlFREE Full Text
  39. ↵
    1. Duclaux G.,
    2. Rey P.,
    3. Guillot S.,
    4. Ménot R. P.
    , 2007, Orogen-parallel flow during continental convergence: Numerical experiments and Archaean field examples: Geology, v. 35, n. 8, p. 715–718, doi:http://dx.doi.org/10.1130/G23540A.1
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Friend C. R. L.,
    2. Nutman A. P.
    , 2005a, New pieces to the Archaean terrane jigsaw puzzle in the Nuuk region, southern West Greenland: Steps in transforming a simple insight into a complex regional tectonothermal model: Journal of the Geological Society, London, v. 162, n. 1, p. 147–163, doi:http://dx.doi.org/10.1144/0016-764903-161
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Friend C. R. L.,
    2. Nutman A. P.
    , 2005b, Complex 3670-3500 Ma orogenic episodes superimposed on juvenile crust accreted between 3850-3690 Ma, Itsaq Gneiss Complex, southern West Greenland: Journal of Geology, v. 113, n. 4, p. 375–398, doi:http://dx.doi.org/10.1086/430239
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Friend C. R. L.,
    2. Nutman A. P.
    , 2010, Eoarchean ophiolites? New evidence for the debate on the Isua supracrustal belt, southern West Greenland: American Journal of Science, v. 310, n. 9, p. 826–861, doi:http://dx.doi.org/10.2475/09.2010.04
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Friend C. R. L.,
    2. Nutman A. P.
    , 2011, Dunites from Isua, southern West Greenland: A ca. 3720 Ma window into subcrustal metasomatism of depleted mantle: Geology, v. 39, n. 7, p. 663–666, doi:http://dx.doi.org/10.1130/G31904.1
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Friend C. R. L.,
    2. Nutman A. P.,
    3. McGregor V. R.
    , 1988, Late Archaean terrane accretion in the Godthåb region, southern West Greenland: Nature, v. 335, p. 535–538, doi:http://dx.doi.org/10.1038/335535a0
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Friend C. R. L.,
    2. Bennett V. C.,
    3. Nutman A. P.
    , 2002, Abyssal peridotites >3,800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex: Contributions to Mineralogy and Petrology, v. 143, n. 1, p. 71–92, doi:http://dx.doi.org/10.1007/s00410-001-0332-7
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Friend C. R. L.,
    2. Bennett V. C.,
    3. Nutman A. P.,
    4. Norman M. D.
    , 2008, Seawater trace element signatures (REE+Y) from Eoarchaean chemical (meta)sedimentary rocks, southern West Greenland, and their corruption during high-grade metamorphism: Contributions to Mineralogy and Petrology, v. 155, n. 2, p. 229–246, doi:http://dx.doi.org/10.1007/s00410-007-0239-z
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Froude C. F.,
    2. Ireland T. R.,
    3. Kinny P. D.,
    4. Williams I. S.,
    5. Compston W.,
    6. Williams I. R.,
    7. Myers J. S.
    , 1983, Ion-microprobe identification of 4100-4200 Myr old terrestrial zircons: Nature, v. 304, p. 616–618 doi:http://dx.doi.org/10.1038/304616a0
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Gill R. C. O.,
    2. Bridgwater D.
    , 1979, Early Archaean basic magmatism in West Greenland: The geochemistry of the Ameralik dykes: Journal of Petrology, v. 20, n. 4, p. 695–726, doi:http://dx.doi.org/10.1093/petrology/20.4.695
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Griffin W. L.,
    2. McGregor V. R.,
    3. Nutman A. P.,
    4. Taylor P. N.,
    5. Bridgwater D.
    , 1980, Early Archaean granulite-facies metamorphism south of Ameralik, West Greenland: Earth and Planetary Science Letters, v. 50, n. 1, p. 59–74, doi:http://dx.doi.org/10.1016/0012-821X(80)90119-3
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Harley S. L.,
    2. Black L. P.
    , 1997, A revised Archaean chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies: Antarctic Science, v. 9, n. 1, p. 74–91, doi:http://dx.doi.org/10.1017/S0954102097000102
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V. C.
    1. Harley S. L.,
    2. Kelly N. M.
    , 2007, Ancient Antarctica: The Archaean of the East Antarctic Shield, in van Kranendonk M. J., Smithies R. H., Bennett V. C., editors, Earth's Oldest Rocks: Amsterdam, Elsevier, Developments in Precambrian Geology, v. 15, p. 149–186, doi:http://dx.doi.org/10.1016/S0166-2635(07)15032-5
    OpenUrlCrossRefWeb of Science
  52. ↵
    1. Henry D. J.,
    2. Mueller P. A.,
    3. Wooden J. L.,
    4. Warner J. L.,
    5. Lee-Berman R.
    , 1982, Granulite grade supracrustal assemblages of the Quad Creek area, eastern Beartooth Mountains, Montana: Montana Bureau of Mines Geological Special Publication, v. 84, p. 147–158.
    OpenUrl
  53. ↵
    1. Herzberg C.,
    2. Condie K.,
    3. Korenaga J.
    , 2010, Thermal history of the Earth and its petrological expression: Earth and Planetary Science Letters, v. 292, n. 1–2, p. 79–88, doi:http://dx.doi.org/10.1016/j.epsl.2010.01.022
    OpenUrlCrossRefGeoRefWeb of Science
  54. ↵
    1. Hickman A. H.
    , 1983, Geology of the Pilbara Block and its environs: Western Australia Geological Survey, Bulletin, v. 127, 268 p.
    OpenUrl
  55. ↵
    1. Eriksson P. G.,
    2. Altermann W.,
    3. Nelson D. R.,
    4. Mueller W. U.,
    5. Catuneau O.
    1. Hickman A. H.,
    2. Van Kranendonk M. J.
    , 2004, Diapiric processes in the formation of Archaean continental crust, East Pilbara Granite-Greenstone Terrane, Australia, in Eriksson P. G., Altermann W., Nelson D. R., Mueller W. U., Catuneau O., editors, The Precambrian Earth: Tempos and Events: Amsterdam, Elsevier, pp. 54–75.
  56. ↵
    1. Hickman A. H.,
    2. Van Kranendonk M. J.
    , 2012, Early Earth evolution: evidence from the 3.5-1.8 Ga geological history of the Pilbara region of Western Australia: Episodes, v. 35, n. 1, p. 283–297.
    OpenUrlGeoRefWeb of Science
  57. ↵
    1. Hiess J.,
    2. Bennett V. C.,
    3. Nutman A. P.,
    4. Williams I. S.
    , 2009, In situ U–Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: New insights to making old crust: Geochimica et Cosmochimica Acta, v. 73, n. 15, p. 4489–4516, doi:http://dx.doi.org/10.1016/j.gca.2009.04.019
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    1. Hiess J.,
    2. Bennett V. C.,
    3. Nutman A. P.,
    4. Williams I. S.
    , 2011, Archaean fluid-assisted crustal cannibalism recorded by low δ18O and negative εHf(T) isotopic signatures of West Greenland granite zircon: Contributions to Mineralogy and Petrology, v. 161, n. 6, p. 1027–1050, doi:http://dx.doi.org/10.1007/s00410-010-0578-z
    OpenUrlCrossRefGeoRefWeb of Science
  59. ↵
    1. Hoffmann J. E.,
    2. Münker C.,
    3. Næraa T.,
    4. Rosing M. T.,
    5. Herwatz D.,
    6. Garbe-Schönberg D.,
    7. Svahnberg H.
    , 2011, Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs: Geochimica et Cosmochimica Acta, v. 75, n. 15, p. 4157–4178, doi:http://dx.doi.org/10.1016/j.gca.2011.04.027
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Hoffman P. F.
    , 1989, Speculation on Laurentia's first gigayear (2.0 to 1.0 Ga): Geology, v. 17, n. 2, p. 135–138, doi:http://dx.doi.org/10.1130/0091-7613(1989)017<0135:SOLSFG>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Hofmann A. W.,
    2. White W. M.
    , 1982, Mantle plumes from ancient oceanic crust: Earth and Planetary Science Letters, v. 57, n. 2, p. 421–436, doi:http://dx.doi.org/10.1016/0012-821X(82)90161-3
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Hunter D. R.,
    2. Barker F.,
    3. Millard H. T. Jr..
    , 1978, The geochemical nature of the Archean Ancient Gneiss Complex and Granodiorite Suite, Swaziland: a preliminary study: Precambrian Research, v. 7, n. 2, p. 105–127, doi:http://dx.doi.org/10.1016/0301-9268(78)90030-X
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Hurst R. W.,
    2. Bridgwater D.,
    3. Collerson K. D.,
    4. Wetherill G. W.
    , 1975, 3600-m.y. Rb-Sr ages from very early Archean gneisses from Saglek Bay, Labrador: Earth and Planetary Sciences Letters, v. 27, n. 3, p. 393–403, doi:http://dx.doi.org/10.1016/0012-821X(75)90058-8
    OpenUrlCrossRef
  64. ↵
    1. Iizuka T.,
    2. Horie K.,
    3. Komiya T.,
    4. Maruyama S.,
    5. Hirata T.,
    6. Hidaka H.,
    7. Windley B. F.
    , 2006, 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: evidence for early continental crust: Geology, v. 34, n. 4, p. 245–248, doi:http://dx.doi.org/10.1130/G22124.1
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Iizuka T.,
    2. Komiya T.,
    3. Uenoa Y.,
    4. Katayama I.,
    5. Uehara Y.,
    6. Maruyama S.,
    7. Hirata T.,
    8. Johnson S. P.,
    9. Dunkley D. J.
    , 2007, Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: New constraints on its tectonothermal history: Precambrian Research, v. 153, n. 3–4, p. 179–208, doi:http://dx.doi.org/10.1016/j.precamres.2006.11.017
    OpenUrlCrossRefGeoRefWeb of Science
  66. ↵
    1. Iizuka T.,
    2. Komiya T.,
    3. Johnson S. P.,
    4. Kon Y.,
    5. Maruyama S.,
    6. Hirata T.
    , 2009, Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: Evidence from in-situ Lu–Hf isotope analysis of zircon: Chemical Geology, v. 259, n. 3–4, p. 230–239, doi:http://dx.doi.org/10.1016/j.chemgeo.2008.11.007
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Jenner F. E.,
    2. Bennett V. C.,
    3. Nutman A. P.,
    4. Friend C. R. L.,
    5. Norman M. D.,
    6. Yaxley G.
    , 2009, Evidence for subduction at 3.8 Ga: Geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal belt: Chemical Geology, v. 261, n. 1–2, p. 82–99, doi:http://dx.doi.org/10.1016/j.chemgeo.2008.09.016
    OpenUrlCrossRefGeoRefWeb of Science
  68. ↵
    1. Johnston S. M.,
    2. Kylander-Clark A. R. C.
    , 2013, Discovery of an Eo-Meso-Neoarchean terrane in the East Greenland Caledonides: Precambrian Research, v. 235, p. 295–302, doi:http://dx.doi.org/10.1016/j.precamres.2013.07.004
    OpenUrlCrossRefGeoRef
  69. ↵
    1. Kemp A. I. S.,
    2. Foster G. L.,
    3. Scherstén A.,
    4. Whitehouse M. J.,
    5. Darling J.,
    6. Storey C.
    , 2009, Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas: Chemical Geology, v. 261, n. 3–4, p. 244–260, doi:http://dx.doi.org/10.1016/j.chemgeo.2008.06.019
    OpenUrlCrossRefGeoRefWeb of Science
  70. ↵
    1. Kinny P. D.,
    2. Nutman A. P.
    , 1996, Zirconology of the Meeberrie gneiss, Yilgarn Craton, Western Australia: an early Archaean migmatite: Precambrian Research, v. 78, n. 1–3, p. 165–178, doi:http://dx.doi.org/10.1016/0301-9268(95)00076-3
    OpenUrlCrossRefGeoRefWeb of Science
  71. ↵
    1. Kinny P. D.,
    2. Williams I. D.,
    3. Froude D. O.,
    4. Ireland T. R.,
    5. Compston W.
    , 1988, Early Archean zircon ages from orthogneisses and anorthosites at Mount Narryer, Western Australia: Precambrian Research, v. 38, n. 4, p. 325–341, doi:http://dx.doi.org/10.1016/0301-9268(88)90031-9
    OpenUrlCrossRefGeoRefWeb of Science
  72. ↵
    1. Kinny P. D.,
    2. Wijbrans J. R.,
    3. Froude D. O.,
    4. Williams I. S.,
    5. Compston W.
    , 1990, Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia: Australian Journal of Earth Sciences, v. 37, n. 1, p. 51–69, doi:http://dx.doi.org/10.1080/08120099008727905
    OpenUrlCrossRefGeoRefWeb of Science
  73. ↵
    1. Komiya T.,
    2. Maruyama S.,
    3. Masuda T,
    4. Nohda S.,
    5. Hayashi M.,
    6. Okamoto K.
    , 1999, Plate tectonics at 3.8–3.7 Ga: Field evidence from the Isua accretionary complex, Southern West Greenland: The Journal of Geology, v. 107, n. 5, p. 515–554, doi:http://dx.doi.org/10.1086/314371
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  74. ↵
    1. van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V. C.
    1. Kröner A.
    , 2007, The Ancient Gneiss Complex of Swaziland and environs: Record of early Archean crustal evolution in southern Africa, in van Kranendonk M. J., Smithies R. H., Bennett V. C., editors, Earth's Oldest Rocks: Developments in Precambrian Geology, v. 15, p. 465–480, doi:http://dx.doi.org/10.1016/S0166-2635(07)15052-0
    OpenUrlCrossRef
  75. ↵
    1. Kröner A.,
    2. Tegtmeyer A.
    , 1994, Gneiss-greenstone relationships in the Ancient Gneiss Complex of southwestern Swaziland, southern Africa, and implications for early crustal evolution: Precambrian Research, v. 67, n. 1–2, p. 109–139, doi:http://dx.doi.org/10.1016/0301-9268(94)90007-8
    OpenUrlCrossRefGeoRefWeb of Science
  76. ↵
    1. Kröner A.,
    2. Compston W.,
    3. Williams I. S.
    , 1989, Growth of early Archaean crust in the Ancient Gneiss Complex of Swaziland as revealed by single zircon dating: Tectonophysics, v. 161, n. 3–4, p. 271–298, doi:http://dx.doi.org/10.1016/0040-1951(89)90159-5
    OpenUrlCrossRefGeoRefWeb of Science
  77. ↵
    1. Kröner A.
    1. Kröner A.,
    2. Wendt J. I.,
    3. Milisenda C.,
    4. Compston W.,
    5. Maphalala R.
    , 1993, Zircon geochronology and Nd isotope systematics of the Ancient Gneiss Complex, Swaziland, and implications for crustal evolution, in Kröner A., editor, The Ancient Gneiss Complex: Overview Papers and Guidebook for Excursion: Swaziland Geological Survey, Mines Department, Bulletin, v. 11, p. 15–37.
    OpenUrl
  78. ↵
    1. Kröner A.,
    2. Hoffmann J. E.,
    3. Xie H. Q.,
    4. Münker C.,
    5. Hegner E.,
    6. Wan Y. S.,
    7. Hofmann A.,
    8. Liu D. Y.,
    9. Yang J. H.
    , 2014, Generation of early Archaean grey gneisses through melting of older crust in the eastern Kaapvaal craton, southern Africa: Precambrian Research, v. 255, Part 3, p. 823–846, doi:http://dx.doi.org/10.1016/j.precamres.2014.07.017
    OpenUrlCrossRefGeoRef
  79. ↵
    1. Kusiak M. A.,
    2. Whitehouse M. J.,
    3. Wilde S. A.,
    4. Nemchin A. A.,
    5. Clark C.
    , 2013, Mobilization of radiogenic Pb in zircon revealed by ion imaging: Implications for early Earth geochronology: Geology, v. 41, n. 3, p. 291–294, doi:http://dx.doi.org/10.1130/G33920.1
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Leslie A. G,
    2. Higgins A. K.
    , 2008, Foreland-propagating Caledonian thrust systems in East Greenland: The Geological Society of America Memoir, v. 202, p. 169–199, doi:http://dx.doi.org/10.1130/2008.1202(07)
    OpenUrlCrossRef
  81. ↵
    1. Li Z.,
    2. Zhong S.
    , 2009, Supercontinent-superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics: Physics of Earth and Planetary Interiors, v. 176, n. 3–4, p. 143–156, doi:http://dx.doi.org/10.1016/j.pepi.2009.05.004
    OpenUrlCrossRef
  82. ↵
    1. Liu D. Y.,
    2. Nutman A. P.,
    3. Williams I. S.,
    4. Compston W.,
    5. Wu J. S.,
    6. Shen Q. H.
    , 1992, Remnants of >3800 Ma crust in the Chinese part of the Sino-Korean Craton: Geology, v. 20, n. 4, p. 339–342, doi:http://dx.doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V. C.
    1. Liu D. Y.,
    2. Wan Y. S.,
    3. Wu J. S.,
    4. Wilde S. A.,
    5. Zhou H. Y.,
    6. Dong C. Y.,
    7. Yin X. Y.
    , 2007, Eoarchean rocks and zircons in the North China Craton, in van Kranendonk M. J., Smithies R. H., Bennett V. C., editors, Earth's Oldest Rocks: Developments in Precambrian Geology, v. 15, p. 251–274, doi:http://dx.doi.org10.1016/S0166-2635(07)15035-0
    OpenUrlCrossRef
  84. ↵
    1. McGregor V. R.
    , 1968, Field evidence of very old Precambrian rocks in the Godthåb area, West Greenland: Rapport Grønlands Geologiske Undersøgelse, v.15, p. 31–35.
    OpenUrl
  85. ↵
    1. McGregor V. R.
    , 1973, The early Precambrian gneisses of the Godthåb district, West Greenland: Philosophical Transactions of the Royal Society of London, v. A273, n. 1235, p. 343–358, doi:http://dx.doi.org/10.1098/rsta.1973.0005
    OpenUrlCrossRefWeb of Science
  86. ↵
    1. McGregor V. R.,
    2. Mason B.
    , 1977, Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amîtsoq gneisses, West Greenland: American Mineralogist, v. 62, p. 887–904.
    OpenUrlAbstract
  87. ↵
    1. McNaughton N. J.,
    2. Green M. D.,
    3. Compston W.,
    4. Williams I. S.
    , 1988, Are anorthositic rocks basement to the Pilbara Craton?: Geological Society of Australia, Abstracts, v. 9, p. 272–273.
    OpenUrl
  88. ↵
    1. Moorbath S.,
    2. O'Nions R. K.,
    3. Pankhurst R. J.,
    4. Gale N. H.,
    5. McGregor V. R.
    , 1972, Further rubidium-strontium age determinations on the very early Precambrian rocks of the Godthåb district: West Greenland: Nature, v. 240, p. 78–82, doi:http://dx.doi.org/10.1038/physci240078a0
    OpenUrlCrossRefGeoRef
  89. ↵
    1. Moyen J-F.,
    2. van Hunen J.
    , 2012, Short-term episodicity of Archean plate tectonics: Geology, v. 40, n. 5, p. 451–454, doi:http://dx.doi.org/10.1130/G322894.1
    OpenUrlAbstract/FREE Full Text
  90. ↵
    1. Mueller P. A.,
    2. Wooden J. L.
    , 2012, Trace element and Lu-Hf systematics in Hadean-Archean detrital zircons: Implications for crustal Evolution: The Journal of Geology, v. 120, n. 1, p. 16–30, doi:http://dx.doi.org/10.1086/662719
    OpenUrlCrossRef
  91. ↵
    1. Mueller P. A.,
    2. Wooden J. L.,
    3. Nutman A. P.,
    4. Mogk D. W.
    , 1998, Early Archean crust in the northern Wyoming Province: Evidence from U-Pb systematics in detrital zircons: Precambrian Research, v. 91, n. 3–4, p. 295–307, doi:http://dx.doi.org/10.1016/S0301-9268(98)00055-2
    OpenUrlCrossRefGeoRefWeb of Science
  92. ↵
    1. Myers J. S.
    , 1988, Early Archaean Narryer Gneiss Complex, Yilgarn craton, Western Australia: Precambrian Research, v. 38, n. 4, p. 297–307, doi:http://dx.doi.org/10.1016/0301-9268(88)90029-0
    OpenUrlCrossRefGeoRefWeb of Science
  93. ↵
    1. Nagel T. J.,
    2. Hoffmann J. E.,
    3. Münker K.
    , 2012, Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust: Geology, v. 40, n. 4, p. 375–378, doi:http://dx.doi.org/10.1130/G32729.1
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Nance R. D.,
    2. Murphy J. B.,
    3. Santosh M.
    , 2013, The supercontinent cycle: A retrospective essay: Gondwana Research, v. 25, n. 1, p. 4–29, doi:http://dx.doi.org/10.1016/j.gr.2012.12.026
    OpenUrlCrossRef
  95. ↵
    1. Nielsen S. G.,
    2. Baker J. L.,
    3. Krogstad E. J.
    , 2002, Petrogenesis of an early Archaean (3.4 Ga) norite dyke, Isua, West Greenland: evidence for early Archaean crustal recycling?: Precambrian Research, v. 118, n. 1–2, p. 133–148, doi:http://dx.doi.org/10.1016/S0301-9268(02)00108-0
    OpenUrlCrossRefGeoRefWeb of Science
  96. ↵
    1. Nisbet E. G.,
    2. Cheadle M. J.,
    3. Arndt N. T.,
    4. Bickle M. J.
    , 1993, Constraining the potential temperature of the Archaean mantle: A review of evidence from komatiites: Lithos, v. 30, n. 3–4, p. 291–307, doi:http://dx.doi.org/10.1016/0024-4937(93)90042-B
    OpenUrlCrossRefGeoRefWeb of Science
  97. ↵
    1. Nutman A. P.
    , 1986, The early Archaean to Proterozoic history of the Isukasia area, southern West Greenland: Grønlands Geologiske Undersøgelse, Bulletin, v. 154, 80 p.
    OpenUrl
  98. ↵
    1. Nutman A. P.
    , 2001, On the scarcity of >3900 Ma detrital zircons in ≥3500 Ma metasediments: Precambrian Research, v. 105, n. 2–4, p. 93–114, doi:http://dx.doi.org/10.1016/S0301-9268(00)00106-6
    OpenUrlCrossRefWeb of Science
  99. ↵
    1. Nutman A. P.
    , 2006, Antiquity of the Oceans and Continents: Elements, v. 2, n. 4, p. 223–227, doi:http://dx.doi.org/10.2113/gselements.2.4.223
    OpenUrlAbstract/FREE Full Text
  100. ↵
    1. Nutman A. P.,
    2. Bridgwater D.
    , 1986, Early Archaean Amîtsoq tonalites and granites from the Isukasia area, southern West Greenland: Development of the oldest-known sial: Contributions to Mineralogy and Petrology, v. 94, n. 2, p. 137–148, doi:http://dx.doi.org/10.1007/BF00592931
    OpenUrlCrossRefGeoRefWeb of Science
  101. ↵
    1. Nutman A. P.,
    2. Friend C. R. L.
    , 2009, New 1:20000 geological maps, synthesis and history of the Isua supracrustal belt and adjacent gneisses, Nuuk region, southern West Greenland: A glimpse of Eoarchaean crust formation and orogeny: Precambrian Research, v. 172, n. 3–4, p. 189–211, doi:http://dx.doi.org/10.1016/j.precamres.2009.03.017
    OpenUrlCrossRefGeoRefWeb of Science
  102. ↵
    1. Nutman A. P.,
    2. Allaart J. H.,
    3. Bridgwater D.,
    4. Dimroth E.,
    5. Rosing M. T.
    , 1984, Stratigraphic and geochemical evidence for the depositional environment of the early Archaean Isua supracrustal belt, southern West Greenland: Precambrian Research, v. 25, n. 4, p. 365–396, doi:http://dx.doi.org/10.1016/0301-9268(84)90010-X
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    1. Nutman A. P.,
    2. Fryer B. J.,
    3. Bridgwater D.
    , 1989, The early Archaean Nulliak (supracrustal) assemblage, northern Labrador: Canadian Journal of Earth Sciences, v. 26, n. 10, p. 2159–2168, doi:http://dx.doi.org/10.1139/e89–181
    OpenUrlAbstract
  104. ↵
    1. Nutman A. P.,
    2. Kinny P. D.,
    3. Compston W.,
    4. Williams I. S.
    , 1991, SHRIMP U-Pb zircon geochronology of the Narryer Gneiss Complex, Western Australia: Precambrian Research, v. 52, n. 3–4, p. 275–300, doi:http://dx.doi.org/10.1016/0301-9268(91)90084-N
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Nutman A. P.,
    2. Bennett V. C.,
    3. Kinny P. D.,
    4. Price R.
    , 1993, Large-scale crustal structure on the northwestern Yilgarn Craton, Western Australia: evidence from Nd isotopic data and zircon geochronology: Tectonics, v. 12, n. 4, p. 971–981, doi:http://dx.doi.org/10.1029/93TC00377
    OpenUrlCrossRefGeoRefWeb of Science
  106. ↵
    1. Nutman A. P.,
    2. McGregor V. R.,
    3. Friend C. R. L.,
    4. Bennett V. C.,
    5. Kinny P. D.
    , 1996, The Itsaq Gneiss Complex of southern West Greenland; the world's most extensive record of early crustal evolution (3900-3600 Ma): Precambrian Research, v. 78, n. 1–3, p. 1–39, doi:http://dx.doi.org/10.1016/0301-9268(95)00066-6
    OpenUrlCrossRefGeoRefWeb of Science
  107. ↵
    1. Nutman A. P.,
    2. Bennett V. C.,
    3. Friend C. R. L.,
    4. Norman M. D.
    , 1999, Meta-igneous (non-gneissic) tonalites and quartz-diorites from an extensive ca. 3800 Ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation: Contributions to Mineralogy and Petrology, v. 137, n. 4, p. 364–388, doi:http://dx.doi.org/10.1007/s004100050556
    OpenUrlCrossRefGeoRefWeb of Science
  108. ↵
    1. Nutman A. P.,
    2. Friend C. R. L.,
    3. Bennett V. C.,
    4. McGregor V. R.
    , 2000, The early Archaean Itsaq Gneiss Complex of southern West Greenland: The importance of field observations in interpreting age and isotopic data constraints for early terrestrial evolution: Geochimica et Cosmochimica Acta, v. 64, n. 17, p. 3035–3060, doi:http://dx.doi.org/10.1016/S0016-7037(99)00431-7
    OpenUrlCrossRefGeoRefWeb of Science
  109. ↵
    1. Nutman A. P.,
    2. Friend C. R. L.,
    3. Bennett V. C.,
    4. McGregor V. R.
    , 2004, Dating of the Ameralik dyke swarms of the Nuuk district, southern West Greenland: Mafic intrusion events starting from c. 3510 Ma: Journal of the Geological Society, London, v. 161, n. 3, p. 421–430, doi:http://dx.doi.org/10.1144/0016-764903-043
    OpenUrlAbstract/FREE Full Text
  110. ↵
    1. van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V. C.
    1. Nutman A. P.,
    2. Friend C. R. L.,
    3. Horie H.,
    4. Hidaka H.
    , 2007a, The Itsaq Gneiss Complex of Southern West Greenland and the Construction of Eoarchean crust at convergent plate boundaries, in van Kranendonk M. J., Smithies R. H., Bennett V. C., editors, Earth's Oldest Rocks: Developments in Precambrian Geology, v. 15, p. 187–218, doi:http://dx.doi.org/10.1016/S0166-2635(07)15033-7
    OpenUrlCrossRef
  111. ↵
    1. Nutman A. P.,
    2. Bennett V. C.,
    3. Friend C. R. L.,
    4. Horie K.,
    5. Hidaka H.
    , 2007b, ∼3850 Ma tonalites in the Nuuk region, Greenland: Geochemistry and their reworking within an Eoarchaean gneiss complex: Contributions to Mineralogy and Petrology, v. 154, n. 4, p. 385–408, doi:http://dx.doi.org/10.1007/s00410-007-0199-3
    OpenUrlCrossRefGeoRefWeb of Science
  112. ↵
    1. Nutman A. P.,
    2. Wan Y.,
    3. Du L.,
    4. Friend C. R. L.,
    5. Dong C. Y.,
    6. Xie H. Q.,
    7. Wang W.,
    8. Sun H.,
    9. Liu D-Y.
    , 2011, Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei: Precambrian Research, v. 189, n. 1–2, p. 43–65, doi:http://dx.doi.org/10.1016/j.precamres.2011.04.005
    OpenUrlCrossRefGeoRef
  113. ↵
    1. Nutman A. P.,
    2. Bennett V. C.,
    3. Friend C. R. L.,
    4. Hidaka H.,
    5. Yi K.,
    6. Lee S. R.,
    7. Kamiichi T.
    , 2013, The Itsaq Gneiss Complex of Greenland: Episodic 3900 to 3660 Ma juvenile crust formation and recycling in the 3660 to 3600 Ma Isukasian orogeny: American Journal of Science, v. 313, n. 9, p. 877–911, doi:http://dx.doi.org/10.2475/09.2013.03
    OpenUrlAbstract/FREE Full Text
  114. ↵
    1. Nutman A. P.,
    2. Bennett V. C.,
    3. Friend C. R. L.
    , 2015, The emergence of the Eoarchaean proto-arc: evolution of a c. 3700 Ma convergent plate boundary at Isua, southern West Greenland: Geological Society, London, Special Publications, v. 389, p. 113–133, doi:http://dx.doi.org/10.1144/SP389.5
    OpenUrlAbstract/FREE Full Text
  115. ↵
    1. O'Brien P. J.,
    2. Rötzler J.
    , 2003, High-pressure granulites: formation, recovery of peak conditions and implications for tectonics: Journal of Metamorphic Geology, v. 21, n. 1, p. 3–20, doi:http://dx.doi.org/10.1046/j.1525-1314.2003.00420.x
    OpenUrlCrossRefGeoRefWeb of Science
  116. ↵
    1. Ogawa M.
    , 2010, Variety of plumes and the fate of subducted basalt crusts: Physics of the Earth and Planetary Interiors, v. 183, n. 1–2, p. 366–375, doi:http://dx.doi.org/10.1016/j.pepi.2010.05.001
    OpenUrlCrossRefGeoRef
  117. ↵
    1. van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V.
    1. O'Neil J.,
    2. Maurice C.,
    3. Stevenson R. K.,
    4. Larocque J.,
    5. Cloquet C.,
    6. David J.,
    7. Francis D.
    , 2007, The geology of the 3.8 Ga Nuvvuagittuq (Porpoise Cove) Greenstone Belt, northeastern Superior Province, Canada, in van Kranendonk M. J., Smithies R. H., Bennett V., editors, Earth's Oldest Rocks: Developments in Precambrian Geology, v. 15, p. 219–250, doi:http://dx.doi.org/10.1016/S0166-2635(07)15034-9
    OpenUrlCrossRefWeb of Science
  118. ↵
    1. O'Neil J.,
    2. Carlson R. W.,
    3. Francis D.,
    4. Stevenson R. K.
    , 2008, Neodymium-142 evidence for Hadean mafic crust: Science, v. 321, n. 5897, p. 1828–1831, doi:http://dx.doi.org/10.1126/science.1161925
    OpenUrlAbstract/FREE Full Text
  119. ↵
    1. O'Neil J.,
    2. Francis D.,
    3. Carlson R. W.
    , 2011, Implications of the Nuvvuagittuq Greenstone Belt for the formation of Earth's early crust: Journal of Petrology, v. 52, n. 5, p. 985–1009, doi:http://dx.doi.org/10.1093/petrology/egr014
    OpenUrlCrossRefGeoRefWeb of Science
  120. ↵
    1. Piper J. D. A.
    , 1974, Proterozoic crustal distribution, mobile belts and apparent polar movements: Nature, v. 251, p. 381–384, doi:http://dx.doi.org/10.1038/251381a0
    OpenUrlCrossRefGeoRef
  121. ↵
    1. Polat A.,
    2. Hofmann A. W.
    , 2003, Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Precambrian Research, v. 126, n. 3–4, p. 197–218, doi:http://dx.doi.org/10.1016/S0301-9268(03)00095-0
    OpenUrlCrossRefGeoRefWeb of Science
  122. ↵
    1. Polat A.,
    2. Hofmann A. W.,
    3. Rosing M. T.
    , 2002, Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction processes in the early Earth: Chemical Geology, v. 184, n. 3–4, p. 231–254, doi:http://dx.doi.org/10.1016/S0009-2541(01)00363-1
    OpenUrlCrossRefGeoRefWeb of Science
  123. ↵
    1. Rizo H.,
    2. Boyet M.,
    3. Blichert-Toft J.,
    4. O'Neil J.,
    5. Rosing M. T.,
    6. Paquette J.-L.
    , 2012, The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks: Nature, v. 491, p. 96–100, doi:http://dx.doi.org/10.1038/nature11565
    OpenUrlCrossRefGeoRefPubMed
  124. ↵
    1. Rogers J. J. W.,
    2. Santosh M.
    , 2002, Configuration of Columbia, a Mesoproterozoic Supercontinent: Gondwana Research, v. 5, n. 1, p. 5–22, doi:http://dx.doi.org/10.1016/S1342-937X(05)70883-2
    OpenUrlCrossRefGeoRefWeb of Science
  125. ↵
    1. Schiøtte L.,
    2. Compston W.,
    3. Bridgwater D.
    , 1989a, Ion probe U-Th-Pb zircon dating of polymetamorphic orthogneisses from northern Labrador, Canada: Canadian Journal of Earth Sciences, v. 26, n. 8, p. 1533–1556, doi:http://dx.doi.org/10.1139/e89-131
    OpenUrlAbstract
  126. ↵
    1. Schiøtte L.,
    2. Compston W.,
    3. Bridgwater D.
    , 1989b, U-Th-Pb ages of single zircons in Archaean supracrustals from Nain Province, Labrador, Canada: Canadian Journal of Earth Sciences, v. 26, n. 12, p. 2636–2644, doi:http://dx.doi.org/10.1139/e89-224
    OpenUrlAbstract
  127. ↵
    1. Shimojo M.,
    2. Yamamoto S.,
    3. Maki K.,
    4. Hirata T.,
    5. Sawaki Y.,
    6. Aoki K.,
    7. Ishikawa A.,
    8. Okada Y.,
    9. Collerson K. D.,
    10. Komiya T.
    , 2012, U-Pb zircon ages of Early Archean gneisses from northern Labrador: Goldschmidt abstracts, Mineralogical Magazine, v. 76, n. 6, 2367.
    OpenUrl
  128. ↵
    1. Sobolev A. V.,
    2. Hofmann A. W.,
    3. Jochum K. P.,
    4. Kuzmin D. P.,
    5. Stoll B.
    , 2011, A young source for the Hawaiian plume: Nature, v. 467, n. 7361, p. 434–437, doi:http://dx.doi.org/10.1038/nature10321
    OpenUrlCrossRef
  129. ↵
    1. Song B.,
    2. Nutman A .P.,
    3. Liu D. Y.,
    4. Wu J. S.
    , 1996, 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China: Precambrian Research, v. 78, n. 1–3, p. 79–94, doi:http://dx.doi.org/10.1016/0301-9268(95)00070-4
    OpenUrlCrossRefGeoRefWeb of Science
  130. ↵
    1. Steiger R. H.,
    2. Hansen B. T.,
    3. Schuler CH.,
    4. Bär M. T.,
    5. Henriksen N.
    , 1979, Polyorogenic nature of the southern Caledonian fold belt in East Greenland: The Journal of Geology, v. 87, n. 5, p. 475–495, doi:http://dx.doi.org/10.1086/628441
    OpenUrlCrossRefGeoRefWeb of Science
  131. ↵
    1. Stern R. A.,
    2. Bleeker W.
    , 1998, Age of the world's oldest rocks refined using Canada's SHRIMP: The Acasta Gneiss Complex, Northwest Territories: Geoscience Canada, v. 25, n. 1, p. 27–31, doi:http://dx.doi.org/10.12789/gs.v25i1.3966
    OpenUrlCrossRefGeoRefWeb of Science
  132. ↵
    1. Tackley P. J.
    , 2011, Living dead slabs in 3D: The dynamics of compositionally-stratified slabs entering a “slab graveyard” above the core-mantle boundary: Physics of the Earth and Planetary Interiors, v. 188, n. 3–4, p. 150–162, doi:http://dx.doi.org/10.1016/j.pepi.2011.04.013
    OpenUrlCrossRefGeoRef
  133. ↵
    1. Talbot C. J.
    , 1973, A plate tectonic model for the Archean crust: Philosophical Transactions of the Royal Society, London, v. A273, n. 1235, p. 413–427, doi:http://dx.doi.org/10.1098/rsta.1973.0008
    OpenUrlCrossRefWeb of Science
  134. ↵
    1. Van Kranendonk M. J.,
    2. Hickman A. H.,
    3. Smithies R. H.,
    4. Nelson D. R.,
    5. Pike G.
    , 2002, Geology and tectonic evolution of the Archean North Pilbara terrain, Pilbara Craton, Western Australia: Economic Geology, v. 97, n. 4, p. 695–732, doi:http://dx.doi.org/10.2113/gsecongeo.97.4.695
    OpenUrlAbstract/FREE Full Text
  135. ↵
    1. Van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V.
    1. Van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Hickman A. H.,
    4. Champion D. C.
    , 2007, Paleoarchean development of a continental nucleus: The East Pilbara Terrane of the Pilbara Craton, Western Australia, in Van Kranendonk M. J., Smithies R. H., Bennett V., editors, Earth's Oldest Rocks: Developments in Precambrian Geology, v. 15, p. 307–337, doi:http://dx.doi.org/10.1016/S0166-2635(07)15041-6
    OpenUrlCrossRef
  136. ↵
    1. Van Kranendonk M. J.,
    2. Smithies R. H,
    3. Griffin W. L.,
    4. Huston D. L.,
    5. Hickman A. H.,
    6. Champion D. C.,
    7. Anhaeusser C. R.,
    8. Pirajno F.
    , 2014, Making it thick: a volcanic plateau origin of Palaeoarchean continental lithosphere of the Pilbara and Kaapvaal cratons: Geological Society, London, Special Publications, v. 389, p. 83–111, doi:http://dx.doi.org/10.1144/SP389.12
    OpenUrlCrossRef
  137. ↵
    1. Wan Y. S.,
    2. Liu D. Y.,
    3. Song B.,
    4. Wu J. S.,
    5. Yang C. H.,
    6. Zhang Z. Q.,
    7. Geng Y. S.
    , 2005, Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance: Journal of Asian Earth Sciences, v. 24, n. 5, p. 563–575, doi:http://dx.doi.org/10.1016/j.jseaes.2004.02.009
    OpenUrlCrossRefGeoRefWeb of Science
  138. ↵
    1. Wan Y. S.,
    2. Liu D. Y.,
    3. Nutman A. P.,
    4. Zhou H. Y.,
    5. Dong C. Y.,
    6. Yin X. Y.,
    7. Ma M. Z.
    , 2012, Multiple 3.8-3.1 Ga tectono-magmatic events in a newly-discovered area of ancient rocks (the Shengousi Complex), Anshan, North China Craton: Journal of Asian Earth Sciences, v. 54–55, p. 18–30, doi:http://dx.doi.org/10.1016/j.jseaes.2012.03.007
    OpenUrlCrossRef
  139. ↵
    1. Wang X. C.,
    2. Li Z. X.,
    3. Li X. H.,
    4. Li J.,
    5. Xu Y. G.,
    6. Li X. H.
    , 2013, Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics: Earth and Planetary Science Letters, v. 377–378, p. 248–259, doi:http://dx.doi.org/10.1016/j.epsl.2013.07.003
    OpenUrlCrossRef
  140. ↵
    1. White R. V.,
    2. Crowley J. W.,
    3. Myers J. S.
    , 2000, Earth's oldest well-preserved dyke swarms in the vicinity of the Isua greenstone belt, southern West Greenland: Geology of Greenland Survey Bulletin, v. 186, p. 65–72, gsb186p65-72.pdf
    OpenUrlGeoRef
  141. ↵
    1. Van Kranendonk M. J.,
    2. Smithies R. H.,
    3. Bennett V. C.
    1. Wilde S. A.,
    2. Spaggiari C. V.
    , 2007, The Narryer Terrane, Western Australia: A review, in Van Kranendonk M. J., Smithies R. H., Bennett V. C., editors, Earth's Oldest Rocks: Developments in Precambrian Geology, v. 15, p. 275–304, doi:http://dx.doi.org/10.1016/S0166-2635(07)15036-2
    OpenUrlCrossRef
  142. ↵
    1. Wilde S. A.,
    2. Valley J. W.,
    3. Kita N. T.,
    4. Cavosie A. J.,
    5. Liu D. Y.
    , 2008, SHRIMP U-Pb and CAMECA 1280 oxygen isotope results from ancient detrital zircons in the Caozhuang quartzite, Eastern Hebei, North China Craton: Evidence for crustal reworking 3.8 Ga ago: American Journal of Science, v. 308, n. 3, p. 185–199, doi:http://dx.doi.org/10.2475/03.2008.01
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Williams I. R.
    , 1999, Geology of the Muccan 1:100,000 sheet: Western Australia Geological Survey, 1:100,000: Geological Series Explanatory Notes, 39 p.
  144. ↵
    1. Williams I. S.,
    2. Compston W.,
    3. Black L. P.,
    4. Ireland T. R.,
    5. Forster J. J.
    , 1984, Unsupported radiogenic Pb in zircon: A cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages: Contributions to Mineralogy and Petrology, v. 88, n. 4, p. 322–327, doi:http://dx.doi.org/10.1007/BF00376756
    OpenUrlCrossRefGeoRefWeb of Science
  145. ↵
    1. Wilson A. C.
    , 1982, 1:250,000 Geological Map of Swaziland: Mbabane, Swaziland, Geological Survey and Mines Department.
  146. ↵
    1. Wu F. Y.,
    2. Yang J. H.,
    3. Liu X. M.,
    4. Li T. S.,
    5. Xie L. W.,
    6. Yang Y. H.
    , 2005, Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the NCC: Chinese Science Bulletin, v. 50, p. 2473–2480, doi:http://dx.doi.org/10.1360/982005-629
    OpenUrlCrossRefWeb of Science
  147. ↵
    1. Wu F. Y.,
    2. Zhang Y. B.,
    3. Yang J. H.,
    4. Xie L. W.,
    5. Yang Y. H.
    , 2008, Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton: Precambrian Research, v. 167, n. 3–4, p. 339–362, doi:http://dx.doi.org/10.1016/j.precamres.2008.10.002
    OpenUrlCrossRefGeoRefWeb of Science
  148. ↵
    1. Zegers T. E.,
    2. de Wit M. J.,
    3. Dann J.,
    4. White S. H.
    , 1998, Vaalbara, Earth's oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test: Terra Nova, v. 10, n. 5, p. 250–259, doi:http://dx.doi.org/10.1046/j.1365-3121.1998.00199.x
    OpenUrlCrossRefGeoRefWeb of Science
  149. ↵
    1. Zhai M. G.,
    2. Santosh M.
    , 2011, The early Precambrian odyssey of the North China Craton: A synoptic overview: Gondwana Research, v. 20, n. 1, p. 6–26, doi:http://dx.doi.org/10.1016/j.gr.2011.02.005
    OpenUrlCrossRefGeoRefWeb of Science
  150. ↵
    1. Zhao G. C.,
    2. Cawood P. A.,
    3. Wilde S. A.,
    4. Sun M.
    , 2002, Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent: Earth Science Reviews, v. 59, n. 1–4, p. 125–162, doi:http://dx.doi.org/10.1016/S0012-8252(02)00073-9
    OpenUrlCrossRefWeb of Science
  151. ↵
    1. Zhong S.,
    2. Zhang S.,
    3. Li Z. X.,
    4. Roberts J. H.
    , 2007, Supercontinent cycles, true polar wander, and very long-wave length mantle convection: Earth and Planetary Science Letters, v. 261, n. 3–4, p. 551–564, doi:http://dx.doi.org/10.1016/j.epsl.2007.07.049
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 315 (6)
American Journal of Science
Vol. 315, Issue 6
1 Jun 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Proposal for a continent ‘Itsaqia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Proposal for a continent ‘Itsaqia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record
Allen P. Nutman, Vickie C. Bennett, Clark R.L. Friend
American Journal of Science Jun 2015, 315 (6) 509-536; DOI: 10.2475/06.2015.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Proposal for a continent ‘Itsaqia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record
Allen P. Nutman, Vickie C. Bennett, Clark R.L. Friend
American Journal of Science Jun 2015, 315 (6) 509-536; DOI: 10.2475/06.2015.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • THE EARLIEST ROCK RECORD
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Remnants of Eoarchean continental crust derived from a subducted proto-arc
  • Lithological, structural, and geochemical characteristics of the Mesoarchean Tartoq greenstone belt, southern West Greenland, and the Chugach - Prince William accretionary complex, southern Alaska: evidence for uniformitarian plate-tectonic processes
  • Plate-tectonic evolution of the Earth: bottom-up and top-down mantle circulation
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Itsaqia
  • continent formation
  • mantle convection
  • plate tectonics
  • Eoarchean
  • Wilson Cycle

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire