Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Proposal for a continent ‘Itsaqia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record

Allen P. Nutman, Vickie C. Bennett and Clark R.L. Friend
American Journal of Science June 2015, 315 (6) 509-536; DOI: https://doi.org/10.2475/06.2015.01
Allen P. Nutman
* GeoQuEST Research Centre, School of Earth & Environmental Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: anutman@uow.edu.au
Vickie C. Bennett
** Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clark R.L. Friend
*** Glendale, Tiddington, Oxon, OX9 2LQ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

A synthesis of the geological record of Earth's ten remaining oldest surviving gneiss complexes, each containing >3.6 Ga rocks, reveals a common history. We propose that the simplest scenario compatible with all observations is that of formation of an ancient continental mass, here named Itsaqia, by 3.66 Ga from amalgamation of earlier quartzofeldspathic crust, followed by initiation of continental break-up at 3.53 Ga by rifting. Evidence for this is reconstructed from the remaining oldest rock record (only ca. 10,000 km2 globally).

Dominating the surviving fragments of the proposed Itsaqia continent are 3.9 to 3.66 Ga tonalites that represent juvenile crustal additions with whole-rock initial εNd >+1 and zircon initial εHf ≈ 0. Their trace element chemistry shows that they were derived by ca. 30 percent partial melting of garnetiferous, mostly eclogitized basic rocks, leaving behind a subcrustal garnet-rich restite. The tonalites contain inclusions of mafic rocks with chemical signatures diagnostic of mantle wedge fluxing, such as enrichment in the light rare earths and depletion of Nb and Ti. We interpret that this juvenile crust formed repeatedly in arc-like constructs at convergent plate boundaries. The Acasta Gneiss of Canada is the only undisputed surviving rock record of the proposed Itsaqia continent where crust formation extends back to the Hadean.

Before ca. 3.66 Ga, individual gneiss complexes show distinct chronologies of crust formation, yet despite their present-day isolation, they underwent identical 3.66 to 3.6 Ga high temperature orogenic events (Isukasian orogeny) – which we contend indicates that from 3.66 Ga these complexes had amalgamated into a single continental mass. Rare surviving 3.66 Ga high-pressure granulite rocks that underwent rapid decompression indicate tectonic crustal thickening then collapse during amalgamation. This was followed by almost 50 million years of high heat flow and lower pressure metamorphism, most probably in an extensional setting.

Starting from ca. 3.53 Ga, we propose that komatiite and basalt eruption and dike emplacement marked the start of Itsaqia's dismemberment by rifting. We further speculate that the deep mantle upwelling responsible for this plume-related magmatism was triggered by either the cascade of pre-3.66 Ga sub-Itsaqia high density garnet-rich restitic subduction graveyards into the lower mantle or the thermal insulation effect of Itsaqia. This resembles the mechanisms of supercontinent breakup throughout Earth's history. Hence we propose that Wilson Cycles of continent amalgamation and breakup were already initiated by the Eoarchean, near the start of the rock record. Australia's East Pilbara region was over the top of the plume, where the thermal impact destroyed Itsaqia by melting to give rise to felsic igneous rocks coeval with komatiites. Greenland's Itsaq Gneiss Complex was peripheral to the plume, and hence was heavily diked at ca. 3.5 Ga, but was not melted.

  • Itsaqia
  • continent formation
  • mantle convection
  • plate tectonics
  • Eoarchean
  • Wilson Cycle
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

American Journal of Science: 315 (6)
American Journal of Science
Vol. 315, Issue 6
1 Jun 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Proposal for a continent ‘Itsaqia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Proposal for a continent ‘Itsaqia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record
Allen P. Nutman, Vickie C. Bennett, Clark R.L. Friend
American Journal of Science Jun 2015, 315 (6) 509-536; DOI: 10.2475/06.2015.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Proposal for a continent ‘Itsaqia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record
Allen P. Nutman, Vickie C. Bennett, Clark R.L. Friend
American Journal of Science Jun 2015, 315 (6) 509-536; DOI: 10.2475/06.2015.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • THE EARLIEST ROCK RECORD
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Remnants of Eoarchean continental crust derived from a subducted proto-arc
  • Lithological, structural, and geochemical characteristics of the Mesoarchean Tartoq greenstone belt, southern West Greenland, and the Chugach - Prince William accretionary complex, southern Alaska: evidence for uniformitarian plate-tectonic processes
  • Plate-tectonic evolution of the Earth: bottom-up and top-down mantle circulation
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Itsaqia
  • continent formation
  • mantle convection
  • plate tectonics
  • Eoarchean
  • Wilson Cycle

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire