Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Was the Cambrian explosion both an effect and an artifact of true polar wander?

Ross N. Mitchell, Timothy D. Raub, Samuel C. Silva and Joseph L. Kirschvink
American Journal of Science December 2015, 315 (10) 945-957; DOI: https://doi.org/10.2475/10.2015.02
Ross N. Mitchell
* Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125 USA
** Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut 06511 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ross.mitchell@yale.edu
Timothy D. Raub
*** Department of Earth and Environmental Sciences, University of St Andrews, Fife KY16 9AL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samuel C. Silva
§ Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269-3042, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph L. Kirschvink
* Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125 USA
§§ Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Allen A. P.,
    2. Brown J. H.,
    3. Gillooly J. F.
    , 2002, Global biodiversity, biochemical kinetics, and the energetic-equivalence rule: Science, v. 297, n. 5586, p. 1545–1548, doi:http://dx.doi.org/10.1126/science.1072380
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Allison P. A.,
    2. Briggs D. E. G.
    , 1993, Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction: Geology, v. 21, n. 1, p. 65–68, doi:http://dx.doi.org/10.1130/0091-7613(1993)021<0065:PSBPSD>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Bambach R. K.,
    2. Knoll A. H.,
    3. Wang S. C.
    , 2004, Origination, extinction, and mass depletions of marine diversity: Paleobiology, v. 30, n. 4, p. 522–542, doi:http://dx.doi.org/10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Barr T. D.,
    2. Kirschvink J. L.
    , 1983, The paleoposition of North America in the early Palaeozoic: New data from the Caborca sequence in Sonora, Mexico: EOS Transactions of the American Geophysical Union, p. 689–690.
  5. ↵
    1. Berner R. A.
    , 1982, Burial of organic and pyrite sulfur in the modern ocean: Its geochemical and environmental significance: American Journal of Science, v. 282, n. 4, p. 451–473, doi:http://dx.doi.org/10.2475/ajs.282.4.451
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Bjerrum C. J.,
    2. Canfield D. E.
    , 2011, Towards a quantitative understanding of the late Neoproterozoic carbon cycle: Proceedings of the National Academy of Sciences of the United States of America, v. 108, n. 14, p. 5542–5547, doi:http://dx.doi.org/10.1073/pnas.1101755108
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Bowring S. A.,
    2. Grotzinger J. P.,
    3. Isachsen C. E.,
    4. Knoll A. H.,
    5. Pelechaty S. M.,
    6. Kolosov P.
    , 1993, Calibrating rates of Early Cambrian evolution: Science, v. 261, n. 5126, p. 1293–1298, doi:http://dx.doi.org/10.1126/science.11539488
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Brown J. H.
    , 2014, Why are there so many species in the tropics?: Journal of Biogeography, v. 41, n. 1, p. 8–22, doi:http://dx.doi.org/10.1111/jbi.12228
    OpenUrlCrossRefPubMed
  9. ↵
    1. Butterfield N. J.
    , 1990, Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale: Paleobiology, v. 16, n. 3, p. 272–286.
    OpenUrlAbstract
  10. ↵
    1. Davidson E. H.,
    2. Peterson K. J.,
    3. Cameron R. A.
    , 1995, Origin of bilaterian body plans: Evolution of developmental regulatory mechanisms: Science, v. 270, n. 5240, p. 1319–1325, doi:http://dx.doi.org/10.1126/science.270.5240.1319
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Doubrovine P. V.,
    2. Steinberger B.,
    3. Torsvik T. H.
    , 2012, Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans: Journal of Geophysical Research, v. 117, p. B09101, doi:http://dx.doi.org/10.1029/2011JB009072
    OpenUrlCrossRef
  12. ↵
    1. Erwin D. H.,
    2. Laflamme M.,
    3. Tweedt S. M.,
    4. Sperling E. A.,
    5. Pisani D.,
    6. Peterson K. J.
    , 2011, The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals: Science, v. 334, n. 6059, p. 1091–1097, doi:http://dx.doi.org/10.1126/science.1206375
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Evans D. A. D.
    , 2003, True polar wander and supercontinents: Tectonophysics, v. 362, n. 1–4, p. 303–320, doi:http://dx.doi.org/10.1016/S0040-1951(02)000642-X
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Foote M.
    , 2003, Origination and extinction through the Phanerozoic: A new approach: The Journal of Geology, v. 111, n. 2, p. 125–148, doi:http://dx.doi.org/10.1086/345841
    OpenUrlCrossRefGeoRefWeb of Science
  15. ↵
    1. Gallet Y.,
    2. Pavlov V.,
    3. Courtillot V.
    , 2003, Magnetic reversal frequency and apparent polar wander of the Siberian platform in the earliest Palaeozoic, inferred from the Khorbusuonka river section (northeastern Siberia): Geophysical Journal International, v. 154, n. 3, p. 829–840, doi:http://dx.doi.org/10.1046/j.1365-246X.2003.01996.x
    OpenUrlCrossRef
  16. ↵
    1. Schopf J. W.,
    2. Klein C.
    1. Kirschvink J. L.
    , 1992, A Paleogeographic Model for Vendian and Cambrian Time, in Schopf J. W., Klein C., editors, The Proterozoic Biosphere: A Multidisciplinary Study: Cambridge, New York, Cambridge University Press, p. 569–581, doi:http://dx.doi.org/10.1017/CBO9780511601064.014
    OpenUrlCrossRef
  17. ↵
    1. Bäuerlein E.
    1. Kirschvink J. L.,
    2. Hagadorn J. W.
    , 2000, A grand unified theory of biomineralization, in Bäuerlein E., editor, The Biomineralisation of Nano- and Mirco-Structures: Weinheim, Germany, Wiley-VCH Verlag GmbH, p. 139–150.
  18. ↵
    1. Kirschvink J. L.,
    2. Raub T. D.
    , 2003, A methane fuse for the Cambrian explosion: carbon cycles and true polar wander: Comptes Rendues Geoscience, v. 335, n. 1, p. 65–78, doi:http://dx.doi.org/10.1016/S1631-0713(03)00011-7
    OpenUrlCrossRef
  19. ↵
    1. Kirschvink J. L.,
    2. Rozanov A. Y.
    , 1984, Magnetostratigraphy of lower Cambrian strata from the Siberian Platform: a palaeomagnetic pole and a preliminary polarity time-scale: Geological Magazine, v. 121, n. 3, p. 189–203, doi:http://dx.doi.org/10.1017/S0016756800028259
    OpenUrlAbstract
  20. ↵
    1. Kirschvink J. L.,
    2. Ripperdan R. L.,
    3. Evans D. A.
    , 1997, Evidence for a large-scale reorganization of Early Cambrian continental masses by intertial interchange true polar wander: Science, v. 277, p. 541–545, doi:http://dx.doi.org/10.1126/science.277.5325.541
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Knoll A. H.
    , 2003, Biomineralization and Evolutionary History: Reviews in Mineralogy and Geochemistry, v. 54, n. 1, p. 329–356, doi:http://dx.doi.org/10.2113/0540329
    OpenUrlFREE Full Text
  22. ↵
    1. Llanos M. P. I.,
    2. Tait J. A.,
    3. Popov V.,
    4. Abalmassova A.
    , 2005, Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic: Earth and Planetary Science Letters, v. 240, n. 3–4, p. 732–747, doi:http://dx.doi.org/10.1016/j.epsl.2005.09.063
    OpenUrlCrossRefGeoRefWeb of Science
  23. ↵
    1. Love G. D.,
    2. Grosjean E.,
    3. Stalvies C.,
    4. Fike D. A.,
    5. Grotzinger J. P.,
    6. Bradley A. S.,
    7. Kelly A. E.,
    8. Bhatia M.,
    9. Meredith W.,
    10. Snape C. E.,
    11. Bowring S. A.,
    12. Condon D. J.,
    13. Summons R. E.
    , 2009, Fossil steroids record the appearance of Demospongiae during the Cryogenian period: Nature, v. 457, p. 718–721, doi:http://dx.doi.org/10.1038/nature07673
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  24. ↵
    1. Lowenstein T. K.,
    2. Timofeeff M. N.,
    3. Brennan S. T.,
    4. Hardie L. A.,
    5. Demicco R. V.
    , 2001, Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions: Science, v. 294, n. 5544, p. 1086–1088, doi:http://dx.doi.org/10.1126/science.1064280
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Maloof A. C.,
    2. Schrag D. P.,
    3. Crowley J. L.,
    4. Bowring S. A.
    , 2005, An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco: Canadian Journal of Earth Sciences, v. 42, n. 12, p. 2195–2216, doi:http://dx.doi.org/10.1139/e05-062
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Maloof A. C.,
    2. Halverson G. P.,
    3. Kirschvink J. L.,
    4. Schrag D. P.,
    5. Weiss B. P.,
    6. Hoffman P. F.
    , 2006, Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway: Geological Society of America Bulletin, v. 118, n. 9–10, p. 1099–1124, doi:http://dx.doi.org/10.1130/B25892.1
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Maloof A. C.,
    2. Porter S. M.,
    3. Moore J. L.,
    4. Dudas F. O.,
    5. Bowring S. A.,
    6. Higgins J. A.,
    7. Fike D. A.,
    8. Eddy M. P.
    , 2010a, The earliest Cambrian record of animals and ocean geochemical change: Geological Society of America Bulletin, v. 122, p. 1731–1774.
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Maloof A. C.,
    2. Ramezani J.,
    3. Bowring S. A.,
    4. Fike D. A.,
    5. Porter S. M.,
    6. Mazouad M.
    , 2010b, Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian-Tommotian boundary δ13C shift, Morocco: Geology, v. 38, n. 7, p. 623–626, doi:http://dx.doi.org/10.1130/G30726.1
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Marshall C. R.
    , 2006, Explaining the Cambrian “Explosion” of Animals: Annual Review of Earth and Planetary Sciences, v. 34, p. 355–384, doi:http://dx.doi.org/10.1146/annurev.earth.33.031504.103001
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Meert J. G.
    , 2003, A synopsis of events related to the assembly of eastern Gondwana: Tectonophysics, v. 362, n. 1–4, p. 1–40, doi:http://dx.doi.org/10.1016/S0040-1951(02)00629-7
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Meert J. G.
    , 2013, Ediacaran-Early Ordovician paleomagnetism of Baltica: A review: Gondwana Research, v. 25, n. 1, p. 159–169, doi:http://dx.doi.org/10.1016/j.gr.2013.02.003
    OpenUrlCrossRef
  32. ↵
    1. Mitchell R. N.,
    2. Evans D. A. D.,
    3. Kilian T. M.
    , 2010, Rapid Early Cambrian rotation of Gondwana: Geology, v. 38, n. 8, p. 755–758, doi:http://dx.doi.org/10.1130/G30910.1
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Mitchell R. N.,
    2. Kilian T. M.,
    3. Raub T. D.,
    4. Evans D. A. D.,
    5. Bleeker W.,
    6. Maloof A. C.
    , 2011, Sutton hotspot: Resolving Ediacaran-Cambrian tectonics and true polar wander for Laurentia: American Journal of Science, v. 311, n. 8, p. 651–663, doi:http://dx.doi.org/10.2475/08.2011.01
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Mitchell R. N.,
    2. Kilian T. M.,
    3. Evans D. A. D.
    , 2012, Supercontinent cycles and the calculation of absolute palaeolongitude in deep time: Nature, v. 482, p. 208–211, doi:http://dx.doi.org/10.1038/nature10800
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  35. ↵
    1. Morse J. W.,
    2. Wang Q.,
    3. Tsio M. Y.
    , 1997, Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater: Geology, v. 25, p. 85–87, doi:http://dx.doi.org/10.1130/0091-7613(1997)025<0085:IOTAMC>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Mound J. E.,
    2. Mitrovica J. X.
    , 1998, True polar wander as a mechanism for second-order sea-level variations: Science, v. 279, n. 5350, p. 534–537, doi:http://dx.doi.org/10.1126/science.279.5350.534
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Mound J. E.,
    2. Mitrovica J. X.,
    3. Evans D. A. D.,
    4. Kirschvink J. L.
    , 1999, A sea-level test for inertial interchange true polar wander events: Geophysical Journal International, v. 136, n. 3, p. F5-F10, doi:http://dx.doi.org/10.1046/j.1365-246x.1999.00791.x
    OpenUrlCrossRef
  38. ↵
    1. Narbonne G. M.
    , 2005, The Ediacara Biota: Neoproterozoic Origin of Animals and Their Ecosystems: Annual Review of Earth and Planetary Sciences, v. 33, p. 421–442, doi:http://dx.doi.org/10.1146/annurev.earth.33.092203.122519
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Peters S. E.
    , 2006, Macrostratigraphy of North America: The Journal of Geology, v. 114, n. 4, p. 391–412, doi:http://dx.doi.org/10.1086/504176
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Peters S. E.,
    2. Gaines R. R.
    , 2012, Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion: Nature, v. 484, p. 363–366, doi:http://dx.doi.org/10.1038/nature10969
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  41. ↵
    1. Pianka E. R.
    , 1966, Latitudinal Gradients in Species Diversity: A Review of Concepts: The American Naturalist, v. 100, n. 910, p. 33–46, doi:http://dx.doi.org/10.1086/282398
    OpenUrlCrossRefWeb of Science
  42. ↵
    1. Porter S. M.
    , 2007, Seawater Chemistry and Early Carbonate Biomineralization: Science, v. 316, n. 5829, p. 1302, doi:http://dx.doi.org/10.1126/science.1137284
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Raub T. D.,
    2. Kirschvink J. L.,
    3. Evans D. A. D.
    , 2007, True Polar Wander: Linking Deep and Shallow Geodynamics to Hydro- and Bio-spheric Hypotheses: Treatise on Geophysics, v. 5, p. 511–530, doi:http://dx.doi.org/10.1016/B978-0-444-53802-4.00108-1
    OpenUrlCrossRef
  44. ↵
    1. Roy K.,
    2. Jablonski D.,
    3. Valentine J. W.,
    4. Rosenberg G.
    , 1998, Marine latitudinal diversty gradients: Tests of causal hypotheses: Proceedings of the National Academy of Sciences of the United States of America, v. 95, n. 7, p. 3699–3702, doi:http://dx.doi.org/10.1073/pnas.95.7.3699
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Seilacher A.,
    2. Buantois L. A.,
    3. Mangano M. G.
    , 2005, Trace fossils in the Ediacaran-Cambrian transition: Behavioral diversification, ecological turnover and environmental shift: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 227, n. 4, p. 323–356, doi:http://dx.doi.org/10.1016/j.palaeo.2005.06.003
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Sperling E. A.,
    2. Frieder C. A.,
    3. Raman A. V.,
    4. Girguis P. R.,
    5. Levin L. A.,
    6. Knoll A. H.
    , 2013, Oxygen, ecology, and the Cambrian radiation of animals: Proceedings of the National Academy of Sciences of the United States of America, v. 110, n. 33, p. 13446–13451, doi:http://dx.doi.org/10.1073/pnas.1312778110
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Squire R. J.,
    2. Campbell I. H.,
    3. Allen C. M.,
    4. Wilson C. J. L.
    , 2006, Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?: Earth and Planetary Science Letters, v. 250, n. 1–2, p. 116–133, doi:http://dx.doi.org/10.1016/j.epsl.2006.07.032
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Steinberger B.,
    2. Torsvik T. H.
    , 2008, Absolute plate motions and true polar wander in the absence of hotspot tracks: Nature, v. 452, p. 620–623, doi:http://dx.doi.org/10.1038/nature06824
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  49. ↵
    1. Torsvik T. H.,
    2. Van der Voo R.,
    3. Doubrovine P. V.,
    4. Burke K.,
    5. Steinberger B.,
    6. Ashwal L. D.,
    7. Trønnes R. G.,
    8. Webb S. J.,
    9. Bull A. L.
    , 2014, Deep mantle structure as a reference frame for movements in and on the Earth: Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 24, p. 8735–8740, doi:http://dx.doi.org/10.1073/pnas.1318135111
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Tsai V. C.,
    2. Stevenson D. J.
    , 2007, Theoretical constraints on true polar wander: Journal of Geophysical Research-Solid Earth, v. 112, p. B05415, doi:http://dx.doi.org/10.1029/2005jb003923
    OpenUrlCrossRef
  51. ↵
    1. Van der Voo R.
    , 1994, True Polar Wander During The Middle Paleozoic: Earth and Planetary Science Letters, v. 122, n. 1–2, p. 239–243, doi:http://dx.doi.org/10.1016/0012-821X(94)90063-9
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Weiner S.,
    2. Dove P. M.
    , 2003, An Overview of Biomineralization Processes and the Problem of the Vital Effect: Reviews in Mineralogy and Geochemistry, v. 54, n. 1, p. 1–29, doi:http://dx.doi.org/10.2113/0540001
    OpenUrlFREE Full Text
  53. ↵
    1. Wood R. A.,
    2. Grotzinger J. P.,
    3. Dickson J. A. D.
    , 2002, Proterozoic Modular Biomineralized Metazoan from the Nama Group, Namibia: Science, v. 296, n. 5577, p. 2383–2386, doi:http://dx.doi.org/10.1126/science.1071599
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Zhuravlev A. Y.,
    2. Wood R. A.
    , 2008, Eve of biomineralization: Controls on skeletal mineralogy: Geology, v. 36, n. 12, p. 923–926, doi:http://dx.doi.org/10.1130/G25094A.1
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Science: 315 (10)
American Journal of Science
Vol. 315, Issue 10
1 Dec 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Was the Cambrian explosion both an effect and an artifact of true polar wander?
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 8 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Was the Cambrian explosion both an effect and an artifact of true polar wander?
Ross N. Mitchell, Timothy D. Raub, Samuel C. Silva, Joseph L. Kirschvink
American Journal of Science Dec 2015, 315 (10) 945-957; DOI: 10.2475/10.2015.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Was the Cambrian explosion both an effect and an artifact of true polar wander?
Ross N. Mitchell, Timothy D. Raub, Samuel C. Silva, Joseph L. Kirschvink
American Journal of Science Dec 2015, 315 (10) 945-957; DOI: 10.2475/10.2015.02
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • ENVIRONMENTAL EFFECTS AND PRESERVATIONAL ARTIFACTS
    • DYNAMIC EARLY CAMBRIAN BIOGEOGRAPHY
    • IMPLICATIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Cambrian explosion
  • True Polar Wander
  • plate tectonics
  • diversity
  • paleogeography

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire