Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

True polar wander and supercontinent cycles: Implications for lithospheric elasticity and the triaxial earth

Ross Nelson Mitchell
American Journal of Science May 2014, 314 (5) 966-979; DOI: https://doi.org/10.2475/05.2014.04
Ross Nelson Mitchell
* Division of Geological and Planetary Sciences, California Institute of Technology 170-25, 1200 East California Boulevard, Pasadena, California 91125, USA
** Department of Geology and Geophysics, 210 Whitney Avenue, Yale University, New Haven, Connecticut 06511 USA;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ross.mitchell@yale.edu
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

    1. Bingham D. K.,
    2. Evans M. E.
    , 1976, Paleomagnetism Of Great Slave Supergroup, Northwest-Territories Canada—Stark Formation: Canadian Journal of Earth Sciences, v. 13, n. 4, p. 563–578, doi:http://dx.doi.org/10.1139/e76-060
    OpenUrlAbstract
  1. ↵
    1. Bleeker W.
    , 2003, The late Archean record: a puzzle in ca. 35 pieces: Lithos, v. 71, n. 2–4, p. 99–134, doi:http://dx.doi.org/10.1016/j.lithos.2003.07.003
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Hanski E.,
    2. Mertanen S.,
    3. Ramo T.,
    4. Vuollo J. I.
    1. Bleeker W.,
    2. Ernst R. E.
    , 2006, Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth's palaeogeographic record back to 2.6 Ga, in Hanski E., Mertanen S., Ramo T., Vuollo J. I. , editors, Dyke Swarms—Time Markers of Crustal Evolution: London, Taylor & Francis Group, p. 3–26.
  3. ↵
    1. Bradley D. C.
    , 2011, Secular trends in the geologic record and the supercontinent cycle: Earth-Science Reviews, v. 108, n. 1–2, p. 16–33, doi:http://dx.doi.org/10.1016/j.earscirev.2011.05.003
    OpenUrlCrossRefGeoRef
    1. Brown P. M.,
    2. Van der voo R.
    , 1982, Paleomagnetism of the latest Precambrian Cambrian Unicoi basalts from the Blue Ridge, northeast Tennessee and southwest Virginia—Evidence for Taconic deformation: Earth and Planetary Science Letters, v. 60, n. 3, p. 407–414, doi:http://dx.doi.org/10.1016/0012-821X(82)90076-0
    OpenUrlCrossRefGeoRefWeb of Science
    1. Buchan K. L.
    , 1991, Baked contact test demonstrates primary nature of dominant (N1) magnetization Of Nipissing intrusions in Southern Province, Canadian Shield: Earth and Planetary Science Letters, v. 105, n. 4, p. 492–499, doi:http://dx.doi.org/10.1016/0012-821X(91)90187-M
    OpenUrlCrossRefGeoRefWeb of Science
    1. Parker A. J.,
    2. Rickwood P. C.,
    3. Tucker D. H.
    1. Buchan K. L.,
    2. Halls H. C.
    , 1990, Paleomagnetism of Proterozoic mafic dyke swarms of the Canadian Shield, in Parker A. J., Rickwood P. C., Tucker D. H. , editors, Mafic Dykes and Emplacement Mechanisms: Rotterdam, Balkema, p. 209–230.
  4. ↵
    1. Buchan K. L.,
    2. Hamilton M. A.
    , 2009, New geochronologic and paleomagnetic results for the Grenville dyke swarm and implications for the Ediacaran APWP for Laurentia: Transactions of the American Geophysical Union, EOS, v. 90 (22), Joint Assembly Supplement, Abstract GA12A-04.
    1. Buchan K. L.,
    2. Ernst R. E.,
    3. Kumarapeli P. S.
    , 2004, Paleomagnetism of the Grenville diabase dyke swarm and implications for the mid Vendian paleolatitude of Laurentia: American Geophysical Union, Spring Meeting 2004, abstract #GP24A-02.
  5. ↵
    1. Buchan K. L.,
    2. Goutier J.,
    3. Hamilton M. A.,
    4. Ernst R. E.,
    5. Matthews W. A.
    , 2007, Paleomagnetism, U-Pb geochronology, and geochemistry of Lac Esprit and other dyke swarms, James Bay area, Quebec, and implications for Paleoproterozoic deformation of the Superior Province: Canadian Journal of Earth Sciences, v. 44, n. 5, p. 643–664, doi:http://dx.doi.org/10.1139/e06-124
    OpenUrlAbstract/FREE Full Text
    1. Buchan K. L.,
    2. LeCheminant A. N.,
    3. van Breemen O.
    , 2009, Paleomagnetism and U-Pb geochronology of the Lac de Gras diabase dyke swarm, Slave Province, Canada: implications for relative drift of Slave and Superior provinces in the Paleoproterozoic: Canadian Journal of Earth Sciences, v. 46, p. 361–379, doi:http://dx.doi.org/10.1139/E09-026
    OpenUrlCrossRefGeoRef
  6. ↵
    1. Campbell I. H.,
    2. Allen C. M.
    , 2008, Formation of supercontinents linked to increases in atmospheric oxygen: Nature Geoscience, v. 1, p. 554–558, doi:http://dx.doi.org/10.1038/ngeo259
    OpenUrlCrossRefWeb of Science
  7. ↵
    1. Caputo M. V.,
    2. Crowell J. C.
    , 1985, Migration of glacial centers across Gondwana during Paleozoic Era: Geological Society of America Bulletin, v. 96, n. 8, p. 1020–1036, doi:http://dx.doi.org/10.1130/0016-7606(1985)96〈1020:MOGCAG〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Carlut J.,
    2. Courtillot V.,
    3. Hulot G.
    , 1999, Over how much time should the geomagnetic field be averaged to obtain the mean-palaeomagnetic field?: Terra Nova, v. 11, n. 5, p. 239–243, doi:http://dx.doi.org/10.1046/j.1365-3121.1999.00253.x
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Cavanaugh M. D.,
    2. Nairn A. E. M.
    , 1980, The role of the Geologic Province in Precambrian Paleomagnetism: Earth-Science Reviews, v. 16, p. 257–276, doi:http://dx.doi.org/10.1016/0012-8252(80)90046-X
    OpenUrlCrossRefGeoRef
  10. ↵
    1. Chan N.-H.,
    2. Mitrovica J. X.,
    3. Matsuyama I.,
    4. Creveling J. R.,
    5. Stanley S.
    , 2011a, The rotational stability of a convecting earth: assessing inferences of rapid TPW in the late Cretaceous: Geophysical Journal International, v. 187, n. 3, p. 1319–1333, doi:http://dx.doi.org/10.1111/j.1365-246X.2011.05245.x
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Chan N.-H.,
    2. Mitrovica J. X.,
    3. Matsuyama I.,
    4. Latychev K.,
    5. Creveling J. R.,
    6. Stanley S.,
    7. Morrow E.
    , 2011b, The rotational stability of a convecting Earth: the Earth's figure and TPW over the last 100 Myr: Geophysical Journal International, v. 187, p. 773–782, doi:http://dx.doi.org/10.1111/j.1365-246X.2011.05174.x
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Cottrell R. D.,
    2. Tarduno J. A.
    , 2000, Late Cretaceous true polar wander: Not so fast (comment): Science, v. 288, n. 5475, p. 2283a, doi:http://dx.doi.org/10.1126/science.288.5475.2283a
    OpenUrlFREE Full Text
  13. ↵
    1. Creveling J. R.,
    2. Mitrovica J. X.,
    3. Chan N.-H.,
    4. Latychev K.,
    5. Matsuyama I.
    , 2012, Mechanisms for oscillatory true polar wander: Nature, v. 491, p. 244–248, doi:http://dx.doi.org/10.1038/nature11571
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  14. ↵
    1. Doubrovine P. V.,
    2. Steinberger B.,
    3. Torsvik T. H.
    , 2012, Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans: Journal of Geophysical Research, v. 117, p. B09101, doi:http://dx.doi.org/10.1029/2011JB009072
    OpenUrlCrossRef
  15. ↵
    1. Dunlop D. J.
    , 1985, Paleomagnetism of Archean rocks from northwestern Ontario: V. Poohbah Lake alkaline complex, Quetico Subprovince: Canadian Journal of Earth Sciences, v. 22, n. 1, p. 27–38, doi:http://dx.doi.org/10.1139/e85-003
    OpenUrlAbstract
    1. Elston D. P.,
    2. Enkin R. J.,
    3. Baker J.,
    4. Kisilevsky D. K.
    , 2002, Tightening the belt: Paleomagnetic-stratigraphic constraints on deposition, correlation, and deformation of the Middle Proterozoic (ca. 1.4 Ga) Belt-Purcell Supergroup, United States and Canada: Geological Society of America Bulletin, v. 114, n. 5, p. 619–638, doi:http://dx.doi.org/10.1130/0016-7606(2002)114〈0619:TTBPSC〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Ernst R. E.,
    2. Buchan K. L.,
    3. Hamilton M. A.,
    4. Okrugin A. V.,
    5. Tomshin M. D.
    , 2000, Integrated paleomagnetism and U-Pb geochronology of mafic dikes of the eastern Anabar Shield region, Siberia: Implications for Mesoproterozoic paleolatitude of Siberia and comparison with Laurentia: Journal of Geology, v. 108, n. 4, p. 381–401, doi:http://dx.doi.org/10.1086/314413
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  17. ↵
    1. Evans D. A.
    , 1998, True polar wander, a supercontinental legacy: Earth and Planetary Science Letters, v. 157, n. 1–2, p. 1–8, doi:http://dx.doi.org/10.1016/S0012-821X(98)00031-4
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    1. Evans D. A. D.
    , 2003, True polar wander and supercontinents: Tectonophysics, v. 362, n. 1–4, p. 303–320, doi:http://dx.doi.org/10.1016/S0040-1951(02)000642-X
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Evans D. A. D.
    , 2009, The paleomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction: Geological Society, London, Special Publications, v. 327, p. 371–404, doi:http://dx.doi.org/10.1144/SP327.16
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Evans D. A. D.,
    2. Halls H. C.
    , 2010, Restoring Proterozoic deformation within the Superior craton: Precambrian Research, v. 183, n. 3, p. 474–489, doi:http://dx.doi.org/10.1016/j.precamres.2010.02.007
    OpenUrlCrossRefGeoRefWeb of Science
  21. ↵
    1. Evans D. A. D.,
    2. Mitchell R. N.
    , 2011, Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna: Geology, v. 39, n. 5, p. 443–446. doi:http://dx.doi.org/10.1130/G31654.1
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Evans D. A. D.,
    2. Pisarevsky S.
    , 2008, Plate tectonics on early Earth? Weighing the paleomagnetic evidence: Geological Society of America Special Paper 440, p. 249–263, doi:http://dx.doi.org/10.1130/2008.2440(12)
    OpenUrlCrossRef
    1. Evans M. E.,
    2. Bingham D. K.
    , 1976, Paleomagnetism of Great Slave Supergroup, Northwest-Territories Canada—Tochatwi Formation: Canadian Journal of Earth Sciences, v. 13, n. 4, p. 555–562, doi:http://dx.doi.org/10.1139/e76-059
    OpenUrlAbstract
    1. Campbell F. H. A.
    1. Evans M.,
    2. Hoye G. S.
    , 1981, Paleomagnetic results from the Lower Proterozoic rocks of Great Slave Lake and Bathurst Inlet areas, Northwest Territories, in Campbell F. H. A. , editor, Proterozoic Basins in Canada: Geological Survey of Canada, Paper n. 81–10, p. 191–202.
  23. ↵
    1. Frost B. R.,
    2. Frost C. D.,
    3. Cornia M.,
    4. Chamberlain K. R.,
    5. Kirkwood R.
    , 2006, The Teton-Wind River domain: a 2.68–2.67 Ga active margin in the western Wyoming Province: Canadian Journal of Earth Sciences, v. 43, n. 10, p. 1489–1510, doi:http://dx.doi.org/10.1139/e06-102
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Gold T.
    , 1955, Instability of the Earth's axis of rotation: Nature, v. 175, p. 526–529, doi:http://dx.doi.org/10.1038/175526a0
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Goldreich P.,
    2. Toomre A.
    , 1969, Some remarks on polar wandering: Journal of Geophysical Research, v. 74, n. 10, p. 2555–2567, doi:http://dx.doi.org/10.1029/JB074i010p02555
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Gurnis M.
    , 1988, Large-scale mantle convection and the aggregation and dispersal of supercontinents: Nature, v. 332, p. 695–699, doi:http://dx.doi.org/10.1038/332695a0
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Peltier R. W.
    1. Hager B.,
    2. Clayton R.
    , 1989, Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid, in Peltier R. W. , editor, Mantle Convection; Plate Tectonics and Global Dynamics: New York, Gordon and Breach Science Publishers, The Fluid Mechanics of Astrophysics and Geophysics, v. 4, p. 657–763.
    OpenUrl
  28. ↵
    1. Hager B. H.,
    2. Clayton R. W.,
    3. Richards M. A.,
    4. Comer R. P.,
    5. Dziewonski A. M.
    , 1985, Lower mantle heterogeneity, dynamic topography and the geoid: Nature, v. 313, p. 541–545, doi:http://dx.doi.org/10.1038/313541a0
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Hoffman P. F.
    , 1989, Speculations on Laurentia's first gigayear (2.0-1.0 Ga): Geology, v. 17, n. 2, p. 135–138, doi:http://dx.doi.org/10.1130/0091-7613(1989)017〈0135:SOLSFG〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Irving E.,
    2. Naldrett A. J.
    , 1977, Paleomagnetism in Abitibi greenstone belt, and Abitibi and Matachewan diabase dikes—Evidence of Archean geomagnetic-field: The Journal of Geology, v. 85, n. 2, p. 157–176, doi:http://dx.doi.org/10.1086/628283
    OpenUrlCrossRefGeoRefWeb of Science
    1. Irving E.,
    2. Park J. K.,
    3. McGlynn J. C.
    , 1972, Paleomagnetism of Et-Then Group and Mackenzie diabase in the Great Slave Lake area: Canadian Journal of Earth Sciences, v. 9, n. 6, p. 744–755, doi:http://dx.doi.org/10.1139/e72-061
    OpenUrlAbstract
  31. ↵
    1. Irving E.,
    2. Baker J.,
    3. Hamilton M.,
    4. Wynne P. J.
    , 2004, Early Proterozoic geomagnetic field in western Laurentia: implications for paleolatitudes, local rotations and stratigraphy: Precambrian Research, v. 129, n. 3–4, p. 251–270, doi:http://dx.doi.org/10.1016/j.precamres.2003.10.002
    OpenUrlCrossRefGeoRefWeb of Science
    1. Kirschvink J. L.
    , 1978, The Precambrian-Cambrian boundary problem: Paleomagnetic directions from the Amadeus Basin, central Australia: Earth and Planetary Science Letters, v. 40, n. 1, p. 91–100, doi:http://dx.doi.org/10.1016/0012-821X(78)90077-8
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. Kirschvink J. L.,
    2. Ripperdan R.,
    3. Evans D. A. D.
    , 1997, Evidence of a large-scale reorganization of Early Cambrian continental masses by intertial interchange true polar wander: Science, v. 277, n. 5325, p. 541–545, doi:http://dx.doi.org/10.1126/science.277.5325.541
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Benn K.,
    2. Mareschal K.,
    3. Condie K.
    1. Korenaga J.
    , 2006, Archean Geodynamics and the Thermal Evolution of Earth, in Benn K., Mareschal K., Condie K. , editors, Archean Geodynamics and Environments: Washington, D.C., American Geophysical Union, Geophysical Monograph Series, p. 7–32, doi:http://dx.doi.org/10.1029/164GM03
    OpenUrlCrossRefWeb of Science
  34. ↵
    1. Li Z. X.,
    2. Evans D. A. D.,
    3. Zhang S.
    , 2004, A 90 degrees spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation: Earth and Planetary Science Letters, v. 220, n. 3–4, p. 409–421, doi:http://dx.doi.org/10.1016/S0012-821X(04)00064-0
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Li Z. X.,
    2. Bogdanova S. V.,
    3. Collins A. S.,
    4. Davidson A.,
    5. De Waele B.,
    6. Ernst R. E.,
    7. Fitzsimons I. C. W.,
    8. Fuck R. A.,
    9. Gladkochub D. P.,
    10. Jacobs J.,
    11. Karlstrom K. E.,
    12. Lu S.,
    13. Natapov L. M.,
    14. Pease V.,
    15. Pisarevsky S. A.,
    16. Thrane K.,
    17. Vernikovsky V.
    , 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, v. 160, n. 1–2, p. 179–200, doi:http://dx.doi.org/10.1016/j.precamres.2007.04.021
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Macdonald F. A.,
    2. Schmitz M. D.,
    3. Crowley J. L.,
    4. Roots C. F.,
    5. Jones D. S.,
    6. Maloof A. C.,
    7. Strauss J. V.,
    8. Cohen P. A.,
    9. Johnston D. T.,
    10. Schrag D. P.
    , 2010, Calibrating the Cryogenian: Science, v. 327, n. 5970, p. 1241–1243, doi:http://dx.doi.org/10.1126/science.1183325
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Maloof A. C.,
    2. Halverson G. P.,
    3. Kirschvink J. L.,
    4. Schrag D. P.,
    5. Weiss B. P.,
    6. Hoffman P. F.
    , 2006, Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway: Geological Society of America Bulletin, v. 118, n. 9–10, p. 1099–1124, doi:http://dx.doi.org/10.1130/B25892.1
    OpenUrlAbstract/FREE Full Text
    1. Marcussen C.,
    2. Abrahamsen N.
    , 1983, Paleomagnetism of the Proterozoic Zig-Zag Dal Basalt and the Midsommerso Dolerites, eastern North Greenland: Geophysical Journal of the Royal Astronomical Society, v. 73, n. 2, p. 367–387, doi:http://dx.doi.org/10.1111/j.1365-246X.1983.tb03321.x
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Matsuyama I.,
    2. Mitrovica J. X.,
    3. Manga M.,
    4. Perron J. T.,
    5. Richards M. A.
    , 2006, Rotational stability of dynamic planets with lithospheres: Journal of Geophysical Research-Planets, v. 111, p. E02003, doi:http://dx.doi.org/10.1029/2005JE002447
    OpenUrlCrossRef
  39. ↵
    1. Matsuyama I.,
    2. Mitrovica J. X.,
    3. Daradich A.,
    4. Gomez N.
    , 2010, The rotational stability of a triaxial ice-age Earth: Journal of Geophysical Research, v. 115, p. B05401, doi:http://dx.doi.org/10.1029/2009JB006564
    OpenUrlCrossRef
  40. ↵
    1. McCausland P. J. A.,
    2. Hankard F.,
    3. Van der Voo R.,
    4. Hall C. M.
    , 2011, Ediacaran paleogeography of Laurentia: Paleomagnetism and 40Ar-39Ar geochronology of the 583 Ma Baie des Moutons syenite, Quebec: Precambrian Research, v. 187, n. 1–2, p. 58–78, doi:http://dx.doi.org/10.1016/j.precamres.2011.02.004
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. McGlynn J. C.,
    2. Irving E.
    , 1978, Multicomponent magnetization of the Pearson Formation (Great Slave Supergroup, N.W.T.) and the Coronation loop: Canadian Journal of Earth Sciences, v. 15, n. 4, p. 643–654, doi:http://dx.doi.org/10.1139/e78-068
    OpenUrlCrossRef
  42. ↵
    1. Meert J. G.
    , 1999, A paleomagnetic analysis of Cambrian true polar wander: Earth and Planetary Science Letters, v. 168, n. 1–2, p. 131–144, doi:http://dx.doi.org/10.1016/S0012-821X(99)00042-4
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Mitchell R. N.,
    2. Bleeker W.,
    3. Van Breeman O.,
    4. LeCheminant A. N.,
    5. Peng P.,
    6. Nilsson M. K. M.
    , 2014, Plate tectonics before 2.0 Ga: Evidence from paleomagnetism of cratons within the Nuna supercontinent: American Journal of Science, v. 314.
  44. ↵
    1. Mitchell R. N.,
    2. Evans D. A. D.,
    3. Kilian T. M.
    , 2010a, Rapid Early Cambrian rotation of Gondwana: Geology, v. 38, n. 8, p. 755–758, doi:http://dx.doi.org/10.1130/G30910.1
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Mitchell R. N.,
    2. Hoffman P. F.,
    3. Evans D. A. D.
    , 2010b, Coronation loop resurrected: Oscillatory apparent polar wander of Orosirian (2.05-1.8 Ga) paleomagnetic poles from Slave craton: Precambrian Research, v. 179, p. 121–134, doi:http://dx.doi.org/10.1016/j.precamres.2010.02.018
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Mitchell R. N.,
    2. Kilian T. M.,
    3. Raub T. D.,
    4. Evans D. A. D.,
    5. Bleeker W.,
    6. Maloof A. C.
    , 2011, Sutton hotspot: Resolving Ediacaran-Cambrian tectonics and true polar wander for Laurentia: American Journal of Science, v. 311, n. 8, p. 651–663, doi:http://dx.doi.org/10.2475/08.2011.01
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Mitchell R. N.,
    2. Kilian T. M.,
    3. Evans D. A. D.
    , 2012, Supercontinent cycles and the calculation of absolute palaeolongitude in deep time: Nature, v. 482, p. 208–211, doi:http://dx.doi.org/10.1038/nature10800
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  48. ↵
    1. Mitrovica J. X.,
    2. Milne G. A.
    , 1998, Glaciation-induced perturbations in the Earth's rotation: A new appraisal: Journal of Geophysical Research-Solid Earth, v. 103, n. B1, p. 985–1005, doi:http://dx.doi.org/10.1029/97JB02121
    OpenUrlCrossRefWeb of Science
  49. ↵
    1. Mitrovica J. X.,
    2. Wahr J.,
    3. Matsuyama I.,
    4. Paulson A.
    , 2005, The rotational stability of an ice-age earth: Geophysical Journal International, v. 161, n. 2, p. 491–506, doi:http://dx.doi.org/10.1111/j.1365-246X.2005.02609.x
    OpenUrlCrossRefWeb of Science
  50. ↵
    1. Morgan J. P.,
    2. Shearer P. M.
    , 1993, Seismic constraints on mantle flow and topography of the 660-km discontinuity: evidence for whole-mantle convection: Nature: v. 365, p. 506–511, doi:http://dx.doi.org/10.1038/365506a0
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Murphy J. B.,
    2. Nance R. D.
    , 2005, How do supercontinents assemble?: American Scientist, v. 92, n. 4, p. 324–333, doi:http://dx.doi.org/10.1511/2004.48.935
    OpenUrlCrossRefWeb of Science
    1. Murthy G.,
    2. Gower C.,
    3. Tubrett M.,
    4. Pätzold R.
    , 1992, Paleomagnetism of Eocambrian Long-Range dykes and Double Mer Formation from Labrador, Canada: Canadian Journal of Earth Sciences, v. 29, n. 6, p. 1224–1234, doi:http://dx.doi.org/10.1139/e92-098
    OpenUrlAbstract
  52. ↵
    1. Nimmo F.,
    2. Pappalardo R. T.
    , 2006, Diapir-induced reorientation of Saturn's moon Enceladus: Nature, v. 441, p. 614–616, doi:http://dx.doi.org/10.1038/nature04821
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  53. ↵
    1. Perron J. T.,
    2. Mitrovica J. X.,
    3. Manga M.,
    4. Matsuyama I.,
    5. Richards M. A.
    , 2007, Evidence for ancient martian ocean in the topography of deformed shorelines: Nature, v. 447, p. 840–843, doi:http://dx.doi.org/10.1038/nature05873
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  54. ↵
    1. Pesonen L. J.,
    2. Nevanlinna H.
    , 1981, Late Precambrian Keweenawan asymmetric reversals: Nature, v. 294, p. 436–439, doi:http://dx.doi.org/10.1038/294436a0
    OpenUrlCrossRefGeoRefWeb of Science
  55. ↵
    1. Phillips B. R.,
    2. Coltice N.
    , 2010, Temperature beneath continents as a function of continental cover and convective wavelength: Journal of Geophysical Research-Solid Earth, v. 115, p. B04408, doi:http://dx.doi.org/10.1029/2009JB006600
    OpenUrlCrossRef
  56. ↵
    1. Phillips B. R.,
    2. Bunge H. P.,
    3. Schaber K.
    , 2009, True polar wander in mantle convection models with multiple, mobile continents: Gondwana Research, v. 15, n. 3–4, p. 288–296, doi:http://dx.doi.org/10.1016/j.gr.2008.11.007
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Raub T. D.,
    2. Kirschvink J. L.,
    3. Evans D. A. D.
    , 2007, True Polar Wander: Linking Deep and Shallow Geodynamics to Hydro- and Bio-spheric Hypotheses: Treatise on Geophysics, v. 5, ch. 14, p. 565–589, doi:http://dx.doi.org/10.1016/B978-044452748-6.00099-7
    OpenUrlCrossRef
  58. ↵
    1. Replumaz A.,
    2. Kárason H.,
    3. van der Hilst R.,
    4. Besse J.,
    5. Tapponnier P.
    , 2004, 4-D evolution of SE Asia's mantle from geological reconstructions and seismic tomography: Earth and Planetary Science Letters, v. 221, n. 1–4, p. 103–115, doi:http://dx.doi.org/10.1016/S0012-821X(04)00070-6
    OpenUrlCrossRefGeoRefWeb of Science
  59. ↵
    1. Sabadini R.,
    2. Yuen D. A.,
    3. Boschi E.
    , 1983, Dynamic effects from mantle phase-transitions on true polar wander during ice ages: Nature, v. 303, p. 694–696, doi:http://dx.doi.org/10.1038/303694a0
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Sabadini R.,
    2. Riva R. E. M.,
    3. Dalla Via G.
    , 2007, Coseismic rotation changes from the 2004 Sumatra earthquake: the effects of Earth's compressibility versus earthquake induced topography: Geophysical Journal International, v. 171, n. 1, p. 231–243, doi:http://dx.doi.org/10.1111/j.1365-246X.2007.03495.x
    OpenUrlCrossRefGeoRefWeb of Science
  61. ↵
    1. Sager W. W.,
    2. Koppers A. A. P.
    , 2000a, Late Cretaceous polar wander of the Pacific plate: Evidence of a rapid true polar wander event: Science, v. 287, n. 5452, p. 455–459, doi:http://dx.doi.org/10.1126/science.287.5452.455
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. Sager W. W.,
    2. Koppers A. A. P.
    , 2000b, Late Cretaceous true polar wander: Not so fast (response): Science, v. 288, n. 5475, p. 2283a, doi:http://dx.doi.org/10.1126/science.288.5475.2283a
    OpenUrlFREE Full Text
  63. ↵
    1. Schenk P.,
    2. Matsuyama I.,
    3. Nimmo F.
    , 2008, True polar wander on Europa from global-scale small-circle depressions: Nature, v. 453, p. 368–371, doi:http://dx.doi.org/10.1038/nature06911
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  64. ↵
    1. Schmidt P. W.,
    2. Williams G. E.
    , 1999, Paleomagnetism of the Paleoproterozoic hematitic breccia and paleosol at Ville-Marie, Québec: further evidence for the low paleolatitude of Huronian glaciation: Earth and Planetary Science Letters, v. 172, n. 3–4, p. 273–285, doi:http://dx.doi.org/10.1016/S0012-821X(99)00201-0
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Silver P. G.,
    2. Behn M. D.
    , 2008, Intermittent plate tectonics?: Science, v. 319, n. 5859, p. 85–88, doi:http://dx.doi.org/10.1126/science.1148397
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Spada G.,
    2. Ricard Y.,
    3. Sabadini R.
    , 1992, Excitation of true polar wander by subduction: Nature, v. 360, p. 452–454, doi:http://dx.doi.org/10.1038/360452a0
    OpenUrlCrossRefGeoRefWeb of Science
  67. ↵
    1. Stacey F.
    , 1992, Physics of the Earth: Brisbane, Australia, Brookfield Press, 525 p.
  68. ↵
    1. Steinberger B.,
    2. O'Connell R.
    , 1997, Changes in the Earth's rotation axis owing to advection of mantle density heterogeneities: Nature, v. 387, p. 169–173, doi:http://dx.doi.org/10.1038/387169a0
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Steinberger B.,
    2. Torsvik T. H.
    , 2008, Absolute plate motions and true polar wander in the absence of hotspot tracks: Nature, v. 452, p. 620–623, doi:http://dx.doi.org/10.1038/nature06824
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  70. ↵
    1. Stoddard P. R.,
    2. Jurdy D. M.
    , 2002, Distribution of Io's volcanoes: Possible influence on spin axis: Geophysical Research Letters, v. 29, n. 9, p. 1349, doi:http://dx.doi.org/10.1029/2001GL014539
    OpenUrlCrossRef
  71. ↵
    1. Swanson-Hysell N. L.,
    2. Maloof A. C.,
    3. Weiss B. P.,
    4. Evans D. A. D.
    , 2009, No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts: Nature Geoscience, v. 2, p. 713–717, doi:http://dx.doi.org/10.1038/ngeo622
    OpenUrlCrossRefWeb of Science
  72. ↵
    1. Swanson-Hysell N. L.,
    2. Maloof A. C.,
    3. Kirschvink J. L.,
    4. Evans D. A. D.,
    5. Halverson G. P.,
    6. Hurtgen M. T.
    , 2012, Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia: American Journal of Science, v. 312, n. 8, p. 817–884, doi:http://dx.doi.org/10.2475/08.2012.01
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Torsvik T. H.,
    2. Van der Voo R.,
    3. Preeden U.,
    4. Mac Niocaill C.,
    5. Steinberger B.,
    6. Doubrovine P. V.,
    7. van Hinsbergen D. J. J.,
    8. Domeier M.,
    9. Gaina C.,
    10. Tohver E.,
    11. Meert J. G.,
    12. McCausland P. J. A.,
    13. Cocks L. R. M.
    , 2012, Phanerozoic polar wander, palaeogeography and dynamics: Earth-Science Reviews, v. 114, n. 3–4, p. 325–368, doi:http://dx.doi.org/10.1016/j.earscirev.2012.06.007
    OpenUrlCrossRefGeoRef
  74. ↵
    1. Tsai V. C.,
    2. Stevenson D. J.
    , 2007, Theoretical constraints on true polar wander: Journal Of Geophysical Research-Solid Earth, v. 112, p. B05415, doi:http://dx.doi.org/10.1029/2005JB003923
    OpenUrlCrossRef
  75. ↵
    1. van der Voo R.
    , 1993, Paleomagnetism of the Atlantic, Tethys, and Iapetus Oceans: Cambridge, New York, Cambridge University Press, 411 p.
  76. ↵
    1. van der Voo R.
    , 1994, True polar wander during the middle Paleozoic?: Earth and Planetary Science Letters, v. 122, n. 1–2, p. 239–243, doi:http://dx.doi.org/10.1016/0012-821X(94)90063-9
    OpenUrlCrossRefGeoRefWeb of Science
    1. Warnock A. C.,
    2. Kodama K. P.,
    3. Zeitler P. K.
    , 2000, Using thermochronometry and low-temperature demagnetization to accurately date Precambrian paleomagnetic poles: Journal of Geophysical Research-Solid Earth, v. 105, n. B8, p. 19435–19453, doi:http://dx.doi.org/10.1029/2000JB900114
    OpenUrlCrossRefWeb of Science
  77. ↵
    1. Weil A. B.,
    2. Geissman J. W.,
    3. Van der Voo R.
    , 2004, Paleomagnetism of the Neoproterozoic Chuar Group, Grand Canyon Supergroup, Arizona: implications for Laurentia's Neoproterozoic APWP and Rodinia break-up: Precambrian Research, v. 129, n. 1–2, p. 71–92, doi:http://dx.doi.org/10.1016/j.precamres.2003.09.016
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    1. Williams H.,
    2. Hoffman P. F.,
    3. Lewry J. F.,
    4. Monger J. W. H.,
    5. Rivers T.
    , 1991, Anatomy of North America: thematic geologic portrayls of the continent: Tectonophysics, v. 187, n. 1–3, p. 117–134, doi:http://dx.doi.org/10.1016/0040-1951(91)90416-P
    OpenUrlCrossRefGeoRefWeb of Science
  79. ↵
    1. Wingate M. T. D.,
    2. Giddings J. W.
    , 2000, Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia-Laurentia connection at 755 Ma: Precambrian Research, v. 100, n. 1–3, p. 335–357, doi:http://dx.doi.org/10.1016/S0301-9268(99)00080-7
    OpenUrlCrossRefGeoRefWeb of Science
    1. Wingate M. T. D.,
    2. Pisarevsky S. A.,
    3. Gladkochub D. P.,
    4. Donskaya T. V.,
    5. Konstantinov K. M.,
    6. Mazukabzov A. M.,
    7. Stanevich A. M.
    , 2009, Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography: Precambrian Research, v. 170, p. 256–266, doi:http://dx.doi.org/10.1016/j.precamres.2009.01.004
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    1. Zhong S. J.,
    2. Zhang N.,
    3. Li Z. X.,
    4. Roberts J. H.
    , 2007, Supercontinent cycles, true polar wander, and very long-wavelength mantle convection: Earth and Planetary Science Letters, v. 261, n. 3–4, p. 551–564, doi:http://dx.doi.org/10.1016/j.epsl.2007.07.049
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 314 (5)
American Journal of Science
Vol. 314, Issue 5
1 May 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
True polar wander and supercontinent cycles: Implications for lithospheric elasticity and the triaxial earth
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
True polar wander and supercontinent cycles: Implications for lithospheric elasticity and the triaxial earth
Ross Nelson Mitchell
American Journal of Science May 2014, 314 (5) 966-979; DOI: 10.2475/05.2014.04

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
True polar wander and supercontinent cycles: Implications for lithospheric elasticity and the triaxial earth
Ross Nelson Mitchell
American Journal of Science May 2014, 314 (5) 966-979; DOI: 10.2475/05.2014.04
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • HISTORICAL TRUE POLAR WANDER
    • IMPLICATIONS FOR THE SUPERCONTINENT CYCLE
    • CONCLUSION
    • ACKNOWLEDGEMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Pannotia: in defence of its existence and geodynamic significance
  • Supercontinents: myths, mysteries, and milestones
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • True polar wander (TPW)
  • plate tectonics
  • supercontinents
  • mantle convection
  • triaxial Earth
  • lithosphere

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire