Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

MgAl2O4–Al8/3O4 spinels: Formulation and calibration of the low-pressure thermodynamics of mixing

Richard O. Sack
American Journal of Science April 2014, 314 (4) 858-877; DOI: https://doi.org/10.2475/04.2014.02
Richard O. Sack
OFM Research Corporation, 28430 NE 47th Place, Redmond, Washington 98053;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: fahlore@centurytel.net
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Beckett J. R.,
    2. Grossman L.
    , 1988, The origin of type C inclusions from carbonaceous chondrites: Earth and Planetary Science Letters, v. 89, n. 1, p. 1–14, doi:http://dx.doi.org/10.1016/0012-821X(88)90028-3
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Beckett J. R.,
    2. Stolper E.
    , 1994, The stability of hibonite, melilite, and other aluminous phases in silicate melts: Implications for the origin of hibonite-bearing inclusions from carbonaceous chondrites: Meteoritics, v. 29, n. 1, p. 41–65, doi:http://dx.doi.org/10.1111/j.1945-5100.1994.tb00651.x
    OpenUrlCrossRefGeoRef
  3. ↵
    1. Berman R. G.
    , 1988, Internally consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2: Journal of Petrology, v. 29, p. 445–522, doi:http://dx.doi.org/10.1093/petrology/29.2.445
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Chutas N. I.,
    2. Kress V. C.,
    3. Ghiorso M. S.,
    4. Sack R. O.
    , 2008, A solution model for high-temperature PbS-AgSbS2-AgBiS2 galena: American Mineralogist, v. 93, n. 10, p. 1630–1640, doi:http://dx.doi.org/10.2138/am.2008.2695
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Connelly J. N.,
    2. Bizzarro M.,
    3. Krot A. N.,
    4. Nordlund A.,
    5. Ivanova M. A.
    , 2012, The absolute chronology and thermal processing of solids in the solar protoplanetary disk: Science, v. 338, n. 6107, p. 651–655, doi:http://dx.doi.org/10.1126/science.1226919
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Dupree R.,
    2. Lewis M. H.,
    3. Smith M. E.
    , 1986, A study of the vacancy distribution in non-stoichiometric spinels by magic-angle spinning NMR: Philosophic Magazine A, v. 53, n. 2, p. L17–L20, doi:http://dx.doi.org/10.1080/01418618608242816
    OpenUrlCrossRef
  7. ↵
    1. Lauretta D. S.,
    2. McSween H. Y. Jr..
    1. Ebel D. S.
    , 2006, Condensation of rocky material in astrophysical environments, in Lauretta D. S., McSween H. Y. Jr.., editors, Meteorites and the early solar system II: Tuscon, University of Arizona Press, p. 253–277.
  8. ↵
    1. Ebel D. S.,
    2. Alexander. C. M. O'D.
    , 2011, Equilibrium condensation from chondritic porous IDP enriched vapor: Implications for Mercury and enstatite chondrite origins: Planetary and Space Science, v. 59, n. 15, p. 1888–1894. doi:http://dx.doi.org/10.1016/j.pss.2011.07.017
    OpenUrlCrossRefWeb of Science
  9. ↵
    1. Ebel D. S.,
    2. Grossman L.
    , 2000, Condensation in dust-enriched systems: Geochimica et Cosmochimica Acta, v. 64, n. 2, p. 339–366, doi:http://dx.doi.org/10.1016/S0016-7037(99)00284-7
    OpenUrlCrossRefGeoRefWeb of Science
  10. ↵
    1. Ebel D. S.,
    2. Sack R. O.
    , 2013, Djerfischerite: nebular source of refractory potassium: Contributions to Mineralogy and Petrology, v. 166, n. 3, p. 923–934, doi:http://dx.doi.org/10.1007/s00410-013-0898-x
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Evans B. W.,
    2. Frost B. R.
    , 1975, Chrome-spinel in progressive metamorphism—a preliminary analysis: Geochimica et Cosmochimica Act, v. 39, n. 6–7, p. 959–972, doi:http://dx.doi.org/10.1016/0016-7037(75)90041-1
    OpenUrlCrossRefWeb of Science
  12. ↵
    1. Lindsley D. H.
    1. Ghiorso M. S.,
    2. Sack R. O.
    , 1991, Thermochemistry of the oxide minerals, in Lindsley D. H., editor, Oxide minerals: petrology and magnetic significance: Reviews in Mineralogy, v. 25, p. 221–264.
    OpenUrlWeb of Science
  13. ↵
    1. MacPherson G. J.,
    2. Mittlefehldt D. W.,
    3. Simon S. B.
    1. Grossman L.,
    2. Beckett J. R.,
    3. Fedkin A. V.,
    4. Simon S. B.,
    5. Ciesla F. J.
    , 2008, Redox conditions in the solar nebula: observational, experimental, and theoretical constraints, in MacPherson G. J., Mittlefehldt D. W., Simon S. B., editors, Oxygen in the solar system: Reviews in Mineralogy and Geochemistry, v. 68, p. 93–140, doi:http://dx.doi.org/10.2138/rmg.2008.68.7
    OpenUrlCrossRefWeb of Science
  14. ↵
    1. Guggenheim E. A.
    , 1937, The theoretical basis of Raoult's law: Transactions of the Faraday Society, v. 33, 151–179, doi:http://dx.doi.org/10.1039/tf9373300151
    OpenUrlCrossRef
  15. ↵
    1. Hallstedt B.
    , 1992, Thermodynamic assessment of the system MgO–Al2O3: Journal of the American Ceramic Society, v. 75, n. 6, p. 1497–1507, doi:http://dx.doi.org/10.1111/j.1151-2916.1992.tb04216.x
    OpenUrlCrossRefWeb of Science
  16. ↵
    1. Harrison R. J.,
    2. Redfern S. A. T.,
    3. O'Neill H. ST. C.
    , 1998, The temperature dependence of the cation distribution in synthetic hercynite (FeAl2O4) from in-situ neutron structure refinements: American Mineralogist, v. 83, n. 9–10, p. 1092–1099.
    OpenUrlAbstract
  17. ↵
    1. Hill R. L.,
    2. Sack R. O.
    , 1987, Thermodynamic properties of Fe-Mg titaniferous magnetite spinels: Canadian Mineralogist, v. 25, p. 443–464.
    OpenUrlWeb of Science
  18. ↵
    1. Jamieson H. E.,
    2. Roeder P. L.
    , 1984, The distribution of Mg and Fe2+ between olivine and spinel at 1300 °C: American Mineralogist, v. 69, p. 283–291.
    OpenUrlAbstract
  19. ↵
    1. Jayaram V.,
    2. Levi C. G.
    , 1989, The structure of δ-alumina evolved from the melt and the γ-δ transformation: Acta Metallurgica, v. 37, n. 2, p. 569–578, doi:http://dx.doi.org/10.1016/0001-6160(89)90240-X
    OpenUrlCrossRefWeb of Science
  20. ↵
    1. Gooley R.
    1. Knowles C. R.
    , 1983, A microprobe study of silver ore in northern Idaho, in Gooley R., editor, Microbeam Analysis: San Francisco, San Francisco Press, p. 61–64.
  21. ↵
    1. Krot A. N.,
    2. Fagan T. J.,
    3. Keil K.,
    4. McKeegan K. D.,
    5. Sahijpal S.,
    6. Hutcheon I. D.,
    7. Petaev M. I.,
    8. Yurimoto H.
    , 2004, Ca, Al-rich inclusions, amoeboid olivine aggregates, and Al-rich chondrules from the unique carbonaceous chondrite Acfer 094: I. mineralogy and petrology: Geochimica et Cosmochimica Acta, v. 68, n. 9, p. 2167–2184, doi:http://dx.doi.org/10.1016/j.gca.2003.10.025
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Lehmann J.,
    2. Roux J.
    , 1986, Experimental and theoretical study of (Fe2+, Mg)(Al, Fe3+)2O4 spinels: Activity–composition relationships, miscibility gaps, vacancy contents: Geochimica et Cosmochimica Acta, v. 50, n. 8, p. 1765–1783, doi:http://dx.doi.org/10.1016/0016-7037(86)90138-9
    OpenUrlCrossRefGeoRefWeb of Science
  23. ↵
    1. Lejus A.-M.
    , 1964, On the formation at high temperature of non-stoichiometric spinel and derived phases in several alumina-based oxide systems and in the alumina-aluminum nitride system: Revue Internationale Des Hautes Temperatures Et Des Re'fractaires, v. 1, n. 1, p. 53–95.
    OpenUrl
  24. ↵
    1. Lueth V. W.,
    2. Megaw P. K. M.,
    3. Pingitore N. E.,
    4. Goodell P. C.
    , 2000, Systematic variation in galena solid solution compositions at Santa Eulalia, Chihuahua, Mexico: Economic Geology, v. 95, 1673−1687, doi:http://dx.doi.org/10.2113/gsecongeo.95.8.1673
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Maekawa H.,
    2. Kato S.,
    3. Kawamura K.,
    4. Yokokawa T.
    , 1997, Cation mixing in natural MgAl2O4 spinel: a high temperature 27Al NMR study: American Mineralogist, v. 82, n. 11–12, p. 1125–1132.
    OpenUrlAbstract
  26. ↵
    1. Makide K.,
    2. Nagashima K.,
    3. Krot A. N.,
    4. Huss G. R.,
    5. Hutcheon I. D.,
    6. Hellebrand E.,
    7. Petaev M. I.
    , 2013, Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from corundum-bearing refractory inclusions in carbonaceous chondrites: Geochimica et Cosmochimica Acta, v. 110, p. 190–215, doi:http://dx.doi.org/10.1016/j.gca.2013.01.028
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Millard R. L.,
    2. Peterson R. C.,
    3. Hunter B. K.
    , 1992, Temperature dependence of cation disorder in MgAl2O4 spinel using 27Al and 17O magic angle spinning NMR: American Mineralogist, v. 77, n. 1–2, p. 44–52.
    OpenUrlAbstract
  28. ↵
    1. Navrotsky A.,
    2. Wechsler B. A.,
    3. Geisinger K.,
    4. Seifert F.
    , 1986, Thermochemistry of MgAl2O4–Al8/3O4 defect spinels: Journal of the American Ceramic Society, v. 69, n. 5, p. 418–422, doi:http://dx.doi.org/10.1111/j.1151-2916.1986.tb04772.x
    OpenUrlCrossRefWeb of Science
  29. ↵
    1. Paglia G.
    , ms, 2004, Determination of the structure of γ-alumina using empirical and first principle calculations combined with supporting experiments: Curtin, Australia, Curtin University of Technology, Ph. D. thesis, 341 p.
  30. ↵
    1. Petaev M. I.,
    2. Wood J. T.
    , 1998, The condensation with partial isolation (CPWI) model of condensation in the solar nebula: Meteoritics and Planetary Science, v. 33, n. 5, p. 1123–1137, doi:http://dx.doi.org/10.1111/j.1945-5100.1998.tb01717.x
    OpenUrlCrossRefWeb of Science
  31. ↵
    1. Krot A. N.,
    2. Scott E. R. D.,
    3. Reipurth B.
    1. Petaev M. I.,
    2. Wood J. T.
    , 2005, Meteoritic constraints on temperatures, pressures, cooling rates, chemical compositions, and modes of condensation in the solar nebula, in Krot A. N., Scott E. R. D., Reipurth B., editors, Chondrites and the protoplanetary disk: American Society of Physics Conference Series, v. 341, p. 373–406.
    OpenUrl
  32. ↵
    1. Peterson R. C.,
    2. Lager G. A.,
    3. Hitterman R. L.
    , 1991, A time-of-flight neutron powder diffraction study of MgAl2O4 at temperatures up to 1273 K: American Mineralogist, v. 76, n. 9–10, p. 1455–1458.
    OpenUrlAbstract
  33. ↵
    1. Rankin G. A.,
    2. Merwin H. E.
    , 1916, The ternary system CaO–Al2O3–MgO: Journal of the American Ceramic Society, v. 38, p. 568–588.
    OpenUrl
  34. ↵
    1. Redfern S. A. T.,
    2. Harrison R. J.,
    3. O'Neill H. St. C.,
    4. Wood D. R. R.
    , 1999, Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600 °C from in situ neutron diffraction: American Mineralogist, v. 84, n. 3, p. 299–310.
    OpenUrlAbstract
  35. ↵
    1. Roy D. M.,
    2. Roy R.,
    3. Osborn E. F.
    , 1953, The system MgO–Al2O3–H2O and influence of carbonate and nitrate ions on the phase equilibria: American Journal of Science, v. 251, n. 5, p. 337–361, doi:http://dx.doi.org/10.2475/ajs.251.5.337
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Saalfeld H.,
    2. Jagodzinski H.
    , 1957, The exsolution of Al2O3-supersaturated Mg–Al–spinel: Zeitscrift fur̈ Kristallographie, v. 109, p. 87–109.
    OpenUrl
  37. ↵
    1. Sack R. O.
    , 1982, Spinels as petrogenetic indicators: Activity-composition relations at low pressures: Contributions to Mineralogy and Petrology, v. 79, n. 2, p. 169–182, doi:http://dx.doi.org/10.1007/BF01132886
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Sack R. O.
    , 2005, Internally consistent database for sulfides and sulfosalts in the system Ag2 S–Cu2S–ZnS–FeS–Sb2S3–As2 S3: Geochimica et Cosmochimica Acta, v. 69, n. 5, p. 1157–1164, doi:http://dx.doi.org/10.1016/j.gca.2004.08.017
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Sack R. O.,
    2. Ghiorso M. S.
    , 1991a, An internally consistent model for the thermodynamic properties of Fe–Mg titanomagnetite-aluminate spinels: Contributions to Mineralogy and Petrology, v. 106, n. 4, p. 474–505, doi:http://dx.doi.org/10.1007/BF00321989; Erratum, v. 107, n. 3, p. 415, doi:http://dx.doi. org10.1007/BF00325108
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Sack R. O.,
    2. Ghiorso M. S.
    , 1991b, Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications: American Mineralogist, v. 76, p. 827–847.
    OpenUrlAbstract
  41. ↵
    1. Sack R. O.,
    2. Goodell P. C.
    , 2002, Retrograde reactions involving galena and Ag-sulfosalts in a zoned ore deposit, Julcani, Peru: Mineralogical Magazine: v. 66, n. 6, p. 1043–1062, doi:http://dx.doi.org/10.1180/0026461026660076
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Sack R. O.,
    2. Lichtner P. C.
    , 2009, Constraining compositions of hydrothermal fluids in equilibrium with polymetallic ore-forming sulfide assemblages: Economic Geology, v. 104, n. 8, p. 1249–1264, doi:http://dx.doi.org/10.2113/gsecongeo.104.8.1249
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Sack R. O.,
    2. Lichtner P. C.
    , 2010, Erratum: Economic Geology, v. 105, n. 1, p. 249, doi:http://dx.doi.org/10.2113/gsecongeo. 105.1.249
    OpenUrlFREE Full Text
  44. ↵
    1. Helgeson H. C.
    1. Sack R. O.,
    2. Ebel D. S.,
    3. O'Leary M. J.
    , 1987, Tennahedrite thermochemistry and metal zoning, in Helgeson H. C., editor, Chemical transport in metasomatic processes: Dordrecht, Holland, D. Reidel, p. 701–731.
  45. ↵
    1. Sack R. O.,
    2. Kuehner S. M.,
    3. Hardy L. S.
    , 2002, Retrograde Ag-enrichment in fahlores from the Coeur d'Alene mining district, Idaho, USA: Mineralogical Magazine, v. 66, n. 1, p. 215–229, doi:http://dx.doi.org/10.1180/0026461026610024
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Sack R. O.,
    2. Fredericks R.,
    3. Hardy L. S.,
    4. Ebel D. S.
    , 2005, Origin of high-silver fahlores from the Galena Mine, Wallace, Idaho, USA: American Mineralogist, v. 90, n. 5–6, p. 1000–1007, doi:http://dx.doi.org/10.2138/am.2005.1651
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Shirasuka K.,
    2. Yamaguchi G.
    , 1974, Precise measurements of the crystal data and the solid solution range of the defective spinel, MgO · nH2O: Yogyo Kyokaishi, v. 82, p. 34–37, doi:http://dx.doi.org/10.2109/jcersj1950.82.952_650
    OpenUrlCrossRef
  48. ↵
    1. Thompson J. B. Jr..
    , 1969, Chemical reactions in crystals: American Mineralogist, v. 54, p. 341–375.
    OpenUrlGeoRefWeb of Science
  49. ↵
    1. Thompson J. B. Jr..
    , 1970, Chemical reactions in crystals: corrections and clarifications: American Mineralogist, v. 55, p. 528–532.
    OpenUrlGeoRefWeb of Science
  50. ↵
    1. Viechnicki D.,
    2. Schmid F.,
    3. McCauley J. W.
    , 1974, Liquidus–solidus determinations in the system MgAl2O4–Al2O3: Journal of the American Ceramic Society, v. 57, n. 1, p. 47–48, doi:http://dx.doi.org/10.1111/j.1151-2916.1974.tb11367.x
    OpenUrlCrossRefWeb of Science
  51. ↵
    1. Viertel H. U.,
    2. Seifert F.
    , 1980, Thermal stability of defect spinels in the system MgAl2O4–Al2O3: Neues Jahrbuch für Mineralogie—Abhandlungen, v. 140, p. 89–101.
    OpenUrlGeoRef
  52. ↵
    1. Wood B. J.,
    2. Kirkpatrick R. J.,
    3. Montez B. A.
    , 1986, Order–disorder phenomena in MgAl2O4 spinel: American Mineralogist, v. 71, p. 999–1006.
    OpenUrlAbstract
  53. ↵
    1. Yoneda S.,
    2. Grossman L.
    , 1995, Condensation of CaO–MgO–Al2O3–SiO2 liquids from cosmic gases: Geochimica et Cosmochimica Acta, v. 59, n. 16, p. 3413–3444, doi:http://dx.doi.org/10.1016/0016-7037(95)00214-K
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 314 (4)
American Journal of Science
Vol. 314, Issue 4
1 Apr 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MgAl2O4–Al8/3O4 spinels: Formulation and calibration of the low-pressure thermodynamics of mixing
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
9 + 11 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
MgAl2O4–Al8/3O4 spinels: Formulation and calibration of the low-pressure thermodynamics of mixing
Richard O. Sack
American Journal of Science Apr 2014, 314 (4) 858-877; DOI: 10.2475/04.2014.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
MgAl2O4–Al8/3O4 spinels: Formulation and calibration of the low-pressure thermodynamics of mixing
Richard O. Sack
American Journal of Science Apr 2014, 314 (4) 858-877; DOI: 10.2475/04.2014.02
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • THERMODYNAMIC FORMULATION
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Thermochemistry of melilites I. Towards resolving an inconsistency in nebular condensation calculations
  • Ti3+ - and Ti4+ - rich fassaites at the birth of the solar system: Thermodynamics and applications
  • Interlayer growth kinetics of a binary solid-solution based on the thermodynamic extremal principle: Application to the formation of spinel at periclase-corundum contacts
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Spinels
  • thermodynamics
  • vacancies
  • condensation
  • solar nebula

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire