Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

The 186 Ma Dashibalbar alkaline granitoid pluton in the north-Gobi Rift of central Mongolia: Evidence for melting of Neoproterozoic basement above a plume

J. Dostal, J. V. Owen, O. Gerel, J. D. Keppie, R. Corney, J. G. Shellnutt and A. Macrae
American Journal of Science February 2014, 314 (2) 613-648; DOI: https://doi.org/10.2475/02.2014.06
J. Dostal
* Department of Geology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jdostal@smu.ca
J. V. Owen
* Department of Geology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O. Gerel
** Department of Geology and Mineralogy, Mongolian University of Science and Technology, P.O. Box 46/672, Ulaanbaatar, Mongolia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. D. Keppie
*** Instituto de Geologia, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F., Mexico
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Corney
* Department of Geology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. G. Shellnutt
§ Department of Earth Science, National Taiwan Normal University, 88 Tingzhou Road Section 4, Taipei 11677, Taiwan (email: )
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jgshelln@ntnu.edu.tw
A. Macrae
* Department of Geology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Beard J. S.
    , 1995, Experimental, geological, and geochemical constraints on the origin of low-K silicic magmas in oceanic arcs: Journal of Geophysical Research, v. 100, n. B8, p. 15,593–15,600, doi:http://dx.doi.org/10.1029/95JB00861
    OpenUrlCrossRefWeb of Science
  2. ↵
    1. Bogdanov N. A.,
    2. Khain V. E.,
    3. Rozen O. M.,
    4. Shipilov E. V.,
    5. Vernikovsky V. A.,
    6. Drachev S. S.,
    7. Kostyuchenko S. L.,
    8. Kuzmichev A. B.,
    9. Sekretov S. B.
    , 1998, Explanatory Note and Tectonic Map of the Kara and Laptev Seas and Northern Siberia at a Scale of 1:2,500,000: Moscow, Russian Academy of Sciences, Institute of Lithosphere of Marginal and Interior Seas, 127 p.
  3. ↵
    1. Bonin B.
    , 2007, A-type granites and related rocks: Evolution of a concept, problems and prospects: Lithos, v. 97, n. 1–2, p. 1–29, doi:http://dx.doi.org/10.1016/j.lithos.2006.12.007
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Brown P. E.,
    2. Becker S. M.
    , 1986, Fractionation, hybridisation and magma mixing in the Kialineq center, East Greenland: Contributions to Mineralogy and Petrology, v. 92, n. 1, p. 57–70, doi:http://dx.doi.org/10.1007/BF00373963
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Chaudhri N.,
    2. Kauri P.,
    3. Okrusch M.,
    4. Schimrosczyk N.
    , 2003, Characterisation of the Dabla granitoids, North Khetri copper belt, Rajasthan, India: Evidence of bimodal anorogenic felsic magmatism: Gondwana Research, v. 6, n. 4, p. 879–895, doi:http://dx.doi.org/10.1016/S1342-937X(05)71032-7
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Civetta L.,
    2. D'Antonio M.,
    3. Orsi G.,
    4. Tilton G. R.
    , 1998, The geochemistry of volcanic rocks from Pantelleria Island, Sicily Channel: Petrogenesis and characteristics of the mantle source region: Journal of Petrology, v. 39, n. 8, p. 1453–1491, doi:http://dx.doi.org/10.1093/petroj/39.8.1453
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Clemens J. D.,
    2. Holloway J. R.,
    3. White A. J. R.
    , 1986, Origin of an A-type granite: Experimental constraints: American Mineralogist, v. 71, n. 3–4, p. 317–324.
    OpenUrlAbstract
  8. ↵
    1. Collins W. J.,
    2. Beams S. D.,
    3. White A. J. R.,
    4. Chappell B. W.
    , 1982, Nature and origin of A-type granites with particular reference to Southeastern Australia: Contributions to Mineralogy and Petrology, v. 80, n. 2, p. 189–200, doi:http://dx.doi.org/10.1007/BF00374895
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Cox K. G.,
    2. Bell J. D.,
    3. Pankhrust R. J.
    , 1979, The interpretation of igneous rocks: London, George Allen & Unwin, 450 p.
  10. ↵
    1. De la Roche H.,
    2. Leterrier J.,
    3. Grandclaude P.,
    4. Marchal M.
    , 1980, A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses: Its relationships with current nomenclature: Chemical Geology, v. 29, n. 1–4, p. 183–210, doi:http://dx.doi.org/10.1016/0009-2541(80)90020-0
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Stoppa F.
    1. Derbeko I. M.
    , 2012, Bimodal volcano-plutonic complexes in the frame of Eastern Member of Mongol-Okhotsk orogenic belt, as a proof of the time of final closure of Mongol-Okhotsk basin, in Stoppa F. , editor, Updates in Volcanology—A Comprehensive Approach to Volcanological Problems: Rijeka, InTech-www.intechopen.com, p. 99–124, doi:http://dx.doi.org/10.5772/2328124
    OpenUrlCrossRef
  12. ↵
    1. Droop G. T. R.
    , 1987, A general equation for calculating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria: Mineralogical Magazine, v. 51, p. 431–435, doi:http://dx.doi.org/10.1180/minmag.1987.051.361.10
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Eby G. N.
    , 1990, The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis: Lithos, v. 26, n. 1–2, p. 115–134, doi:http://dx.doi.org/10.1016/0024-4937(90)90043-Z
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Eby G. N.
    , 1992, Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications: Geology, v. 20, n. 7, p. 641–644, doi:http://dx.doi.org/10.1130/0091-7613(1992)020〈0641:CSOTAT〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Frost B. R.,
    2. Barnes C. G.,
    3. Collins W. J.,
    4. Arculus R. J.,
    5. Ellis D. J.,
    6. Frost C. D.
    , 2001, A geochemical classification for granitic rocks: Journal of Petrology, v. 42, n. 11, p. 2033–2048, doi:http://dx.doi.org/10.1093/petrology/42.11.2033
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. Frost C. D.,
    2. Frost B. R.
    , 2011, On ferroan (A-type) granitoids: their compositional variability and modes of origin: Journal of Petrology, v. 52, n. 1, p. 39–53, doi:http://dx.doi.org/10.1093/petrology/egq070
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    1. Hawthorne F. C.,
    2. Oberti R.
    , 2007, Classification of the amphiboles: Reviews in Mineralogy and Geochemistry, v. 67, n. 1, p. 55–88, doi:http://dx.doi.org/10.2138/rmg.2007.67.2
    OpenUrlFREE Full Text
  18. ↵
    1. Hofmann M.,
    2. Linnemann U.,
    3. Rai V.,
    4. Becker S.,
    5. Gartner A.,
    6. Sagawe A.
    , 2011, The India and South China cratons at the margin of Rodinia-synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses: Lithos, v. 123, n. 1–4, p. 176–187, doi:http://dx.doi.org/10.1016/j.lithos.2011.01.012
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Jahn B. M.,
    2. Litvinovsky B. A.,
    3. Zanvilevich A. N.,
    4. Reichow M.
    , 2009, Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesis and tectonic significance: Lithos, v. 113, n. 3–4, p. 521–539, doi:http://dx.doi.org/10.1016/j.lithos.2009.06.015
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Kalimulin S. M.
    , 1968, Geological setting and mineral resources in the midstream of the Kherulen river basin (sheets L-49-II, III, IV,VIII): Report of geologic mapping at the scale of 1:200 000 carried out under the contract No. 1497 from April 1966, by party No. 5 of the Central Geologic exploration expedition No. 15 of the Office of External Relations of the Ministry of Geology of the SSSR in 1966-1967 (in Russian).
  21. ↵
    1. Kerr A.,
    2. Fryer B. J.
    , 1993, Nd isotope evidence for crust–mantle interaction in the generation of A-type granitoid suites in Labrador, Canada: Chemical Geology, v. 104, n. 1–4, p. 39–60, doi:http://dx.doi.org/10.1016/0009-2541(93)90141-5
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Kuzmin M. I.,
    2. Yarmolyuk V. V.,
    3. Kravchinsky V. A.
    , 2010, Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province: Earth-Science Reviews, v. 102, n. 1–2, p. 29–59, doi:http://dx.doi.org/10.1016/j.earscirev.2010.06.004
    OpenUrlCrossRefGeoRef
  23. ↵
    1. Liégeois J. P.,
    2. Navez J.,
    3. Hertogen J.,
    4. Black R.
    , 1998, Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids; the use of sliding normalization: Lithos, v. 45, n. 1–4, p. 1–28, doi:http://dx.doi.org/10.1016/S0024-4937(98)00023-1
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Litvinovsky B. A.,
    2. Zanvilevich A. N.,
    3. Wickham S. M.,
    4. Steele I. M.
    , 1999, Origin of syenite magmas in A-type granitoid series: syenite-granite series from Transbaikalia: Petrology, v. 7, n. 5, p. 459–481.
    OpenUrlWeb of Science
  25. ↵
    1. Ludwig K. R.
    , 2001, User's manual for Isoplot/Ex v. 2.49. A geochronological toolkit for Microsoft Excel: Berkeley Geochronological Center Special Publication 1a, 55 p.
  26. ↵
    1. Lynch D. J.,
    2. Musselman T. E.,
    3. Gutmann J. T.,
    4. Patchett P. J.
    , 1993, Isotopic evidence for the origin of Cenozoic volcanic rocks in the Pinacate Volcanic Field, Northwestern Mexico: Lithos, v. 29, n. 3–4, p. 295–302, doi:http://dx.doi.org/10.1016/0024-4937(93)90023-6
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Marks M.,
    2. Markl G.
    , 2001, Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilímaussaq intrusion, South Greenland, as deduced from phase equilibria: Journal of Petrology, v. 42, n. 10, p. 1947–1969, doi:http://dx.doi.org/10.1093/petrology/42.10.1947
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Owen J. V.
    , 2012, Double corona structures in 18th century porcelain (1st patent Bow, London, mid-1740s): A record of partial melting and subsolidus reactions: Canadian Mineralogist, v. 50, n. 5, p. 1255–1264, doi:http://dx.doi.org/10.3749/canmin.50.5.1255
    OpenUrlCrossRefWeb of Science
  29. ↵
    1. Patiňo Douce A. E.
    , 1997, Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids: Geology, v. 25, n. 8, p. 743–746, doi:http://dx.doi.org/10.1130/0091-7613(1997)025〈0743:GOMATG〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Pearce J. A.,
    2. Harris N. B.,
    3. Tindle A. G.
    , 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, n. 4, p. 956–983, doi:http://dx.doi.org/10.1093/petrology/25.4.956
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Peccerillo R.,
    2. Taylor S. R.
    , 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey: Contributions to Mineralogy and Petrology, v. 58, n. 1, p. 63–81, doi:http://dx.doi.org/10.1007/BF00384745
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. Mitchell R. H.
    1. Platt R. G.
    , 1996, Nepheline syenite complexes-an overview, in Mitchell R. H. , editor, Undersaturated alkaline rocks: mineralogy, petrogenesis and economic potential: Mineralogical Association of Canada Short Course Notes, v. 24, p. 63–99.
    OpenUrl
  33. ↵
    1. Rapp R. P.,
    2. Watson E. B.
    , 1995, Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling: Journal of Petrology, v. 36, n. 4, p. 891–931, doi:http://dx.doi.org/10.1093/petrology/36.4.891
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Reichow M. K.,
    2. Litvinovsky B. A.,
    3. Parrish R. R.,
    4. Saunders A. D.
    , 2010, Multi-stage emplacement of alkaline and peralkaline syenite–granite suites in the Mongolian–Transbaikalian Belt, Russia: Evidence from U-Pb geochronology and whole rock geochemistry: Chemical Geology, v. 273, n. 1–2, p. 120–135, doi:http://dx.doi.org/10.1016/j.chemgeo.2010.02.017
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Ritchie N. W. M.,
    2. Newbury D. E.,
    3. Davis J. M.
    , 2012, EDS measurements of X-ray intensity at WDS precision and accuracy using a silicon drift detector: Microscopy and Microanalysis, v. 18, n. 4, p. 892–904, doi:http://dx.doi.org/10.1017/S1431927612001109
    OpenUrlCrossRefWeb of Science
    1. Veblen D. R.,
    2. Ribbe P. H.
    1. Robinson P.,
    2. Spear F. S.,
    3. Schumacher J. C.,
    4. Laird J.,
    5. Klein C.,
    6. Evans B. W.,
    7. Doolan B. L.
    , 1982, Phase relations of metamorphic amphiboles, in Veblen D. R., Ribbe P. H., editors. Amphiboles: petrology and experimental phase relations: Reviews in Mineralogy and Geochemistry, v. 9B, p. 1–227.
    OpenUrl
  36. ↵
    1. Ronga F.,
    2. Lustrino M.,
    3. Marzoli A.,
    4. Melluso L.
    , 2010, Petrogenesis of a basalt-comendite-pantellerite rock suite: the Boseti Volcanic Complex (Main Ethiopian Rift): Mineralogy and Petrology, v. 98, n. 1–4, p. 227–243, doi:http://dx.doi.org/10.1007/s00710-009-0064-3
    OpenUrlCrossRefWeb of Science
  37. ↵
    1. Sengör A. M. C.,
    2. Natal'in B. A.,
    3. Burtman V. S.
    , 1993, Evolution of Altaid tectonic collage and Paleozoic crustal growth in Eurasia: Nature, v. 364, p. 299–307, doi:http://dx.doi.org/10.1038/364299a0
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    1. Shellnutt J. G.,
    2. Bhat G. M.,
    3. Wang K. L.,
    4. Brookfield M. E.,
    5. Dostal J.,
    6. Jahn B. M.
    , 2012, Origin of the silicic volcanic rocks of the Early Permian Panjal Traps, Kashmir, India: Chemical Geology, v. 334, p. 154–170, doi:http://dx.doi.org/10.1016/j.chemgeo.2012.10.022
    OpenUrlCrossRefGeoRefWeb of Science
  39. ↵
    1. Sircombe K. N.
    , 2004, AGEDISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions: Computers and Geosciences, v. 30, n. 1, p. 21–31, doi:http://dx.doi.org/10.1016/j.cageo.2003.09.006
    OpenUrlCrossRefWeb of Science
  40. ↵
    1. Sisson T. W.,
    2. Ratajevski K.,
    3. Hankins W. B.,
    4. Glazner A. F.
    , 2005, Voluminous granitic magmas from common basaltic source: Contributions to Mineralogy and Petrology, v. 148, n. 6, p. 635–661, doi:http://dx.doi.org/10.1007/s00410-004-0632-9
    OpenUrlCrossRefGeoRefWeb of Science
    1. Stacey J. S.,
    2. Kramers J. D.
    , 1975, Approximation of terrestrial lead evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, n. 2, p. 207–221, doi:http://dx.doi.org/10.1016/0012-821X(75)90088-6
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Saunders A. D.,
    2. Norry M. J.
    1. Sun S. S.,
    2. McDonough W. F.
    , 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Saunders A. D., Norry M. J. , editors, Magmatism in the Ocean Basins: Geological Society, London, Special Publications, v. 42, p. 313–345, doi:http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19
    OpenUrlCrossRef
  42. ↵
    1. Taylor R. P.,
    2. Strong D. F.,
    3. Fryer B. J.
    , 1981, Volatile control of contrasting trace element distributions in peralkaline granitic and volcanic rocks: Contributions to Mineralogy and Petrology, v. 77, n. 3, p. 267–271, doi:http://dx.doi.org/10.1007/BF00373542
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Thorpe R. S.,
    2. Tindle A. G.
    , 1992, Petrology and petrogenesis of a Tertiary bimodal diorite-peralkaline/subalkaline trachyte-rhyolite dyke association from Lundy, Bristol Channel, UK: Geological Journal, v. 27, n. 2, p. 101–117, doi:http://dx.doi.org/10.1002/gj.3350270202
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    1. Turner S. P.,
    2. Foden J. D.,
    3. Morrison R. S.
    , 1992, Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia: Lithos, v. 28, n. 2, p. 151–179, doi:http://dx.doi.org/10.1016/0024-4937(92)90029-X
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Vernikovsky V. A.,
    2. Kazansky A. Y.,
    3. Matushkin N. Yu.,
    4. Metelkin D. V.,
    5. Sovetov J. K.
    , 2009, The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: geological, structural, sedimentological, geochronological, and paleomagnetic data: Russian Geology and Geophysics, v. 50, n. 4, p. 380–393, doi:http://dx.doi.org/10.1016/j.rgg.2009.03.014
    OpenUrlCrossRefWeb of Science
  46. ↵
    1. Whalen J. B.,
    2. Currie K. L.,
    3. Chappell B. W.
    , 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis: Contributions to Mineralogy and Petrology, v. 95, n. 4, p. 407–419, doi:http://dx.doi.org/10.1007/BF00402202
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Wilhem C.,
    2. Windley B. F.,
    3. Stampfli G. M.
    , 2012, The Altaids of Central Asia: A tectonic and evolutionary innovative review: Earth Science Reviews, v. 113, n. 3–4, p. 303–341, doi:http://dx.doi.org/10.1016/j.earscirev.2012.04.001
    OpenUrlCrossRefGeoRef
  48. ↵
    1. Wu F. Y.,
    2. Sun D. Y.,
    3. Li H. M.,
    4. Jahn B. M.,
    5. Wilde S. A.
    , 2002, A-type granites in Northeastern China: age and geochemical constraints on their petrogenesis: Chemical Geology, v. 187, n. 1–2, p. 143–173, doi:http://dx.doi.org/10.1016/S0009-2541(02)00018-9
    OpenUrlCrossRefGeoRefWeb of Science
  49. ↵
    1. Yarmolyuk V. V.,
    2. Kovalenko V. I.
    , 1991, Rift magmatism of active continental margins and its ore potential: Moscow, Nauka, 263 p. (in Russian).
  50. ↵
    1. Yarmolyuk V. V.,
    2. Kuzmin M. I.
    , 2011, Rifting and silicic large igneous provinces of the Late Paleozoic–Early Mesozoic in the Central Asia: Large Igneous Provinces Commission, doi:http://www.largeigneousprovinces.org/11dec
    OpenUrlCrossRef
  51. ↵
    1. Yarmolyuk V. V.,
    2. Kovalenko V. I.,
    3. Salnikova E. B.,
    4. Budnikov S. V.,
    5. Kovach V. P.,
    6. Kotov A. B.,
    7. Ponomarchuk V. A.
    , 2002, Tectono-magmatic zoning, magma sources, and geodynamic of the Early Mesozoic Mongolo-Transbaikalian magmatic area: Geotectonics, v. 36, p. 293–311.
    OpenUrl
    1. Yavuz F.
    , 2007, WinAmphcal: A Windows program for the IMA-04 amphibole classification: Geochemistry Geophysics Geosystems, v. 8, n. 1, Q01004, 12 p., doi:http://dx.doi.org/10.1029/2006GC001391
    OpenUrlCrossRef
  52. ↵
    1. Yu X.,
    2. Yang S.-F.,
    3. Chen H.-L.,
    4. Chen Z.-Q.,
    5. Li Z.-L.,
    6. Batt G. E.,
    7. Li Y.-Q.
    , 2011, Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U–Pb dating and geochemical characteristics: Gondwana Research, v. 20, n. 2–3, p. 485–497, doi:http://dx.doi.org/10.1016/j.gr.2010.11.009
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Zhao J. X.,
    2. Shiraishi K.,
    3. Ellis D. J.,
    4. Sheraton J. W.
    , 1995, Geochemical and isotopic studies of syenites from the Yamato Mountains, East Antarctica: implications for the origin of syenitic magmas: Geochimica and Cosmochimica Acta, v. 59, n. 7, p. 1363–1382, doi:http://dx.doi.org/10.1016/0016-7037(95)00050-A
    OpenUrlCrossRefWeb of Science
  54. ↵
    1. Zindler A.,
    2. Hart S.
    , 1986, Chemical geodynamics: Annual Review of Earth Planetary Sciences, v. 14, p. 493–571, doi:http://dx.doi.org/10.1146/annurev.ea.14.050186.002425
    OpenUrlCrossRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 314 (2)
American Journal of Science
Vol. 314, Issue 2
1 Feb 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The 186 Ma Dashibalbar alkaline granitoid pluton in the north-Gobi Rift of central Mongolia: Evidence for melting of Neoproterozoic basement above a plume
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
15 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The 186 Ma Dashibalbar alkaline granitoid pluton in the north-Gobi Rift of central Mongolia: Evidence for melting of Neoproterozoic basement above a plume
J. Dostal, J. V. Owen, O. Gerel, J. D. Keppie, R. Corney, J. G. Shellnutt, A. Macrae
American Journal of Science Feb 2014, 314 (2) 613-648; DOI: 10.2475/02.2014.06

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The 186 Ma Dashibalbar alkaline granitoid pluton in the north-Gobi Rift of central Mongolia: Evidence for melting of Neoproterozoic basement above a plume
J. Dostal, J. V. Owen, O. Gerel, J. D. Keppie, R. Corney, J. G. Shellnutt, A. Macrae
American Journal of Science Feb 2014, 314 (2) 613-648; DOI: 10.2475/02.2014.06
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • GEOLOGICAL SETTING
    • ANALYTICAL METHODS
    • PETROGRAPHY AND MINERAL CHEMISTRY
    • GEOCHRONOLOGY
    • GEOCHEMISTRY
    • PETROGENESIS
    • TECTONIC IMPLICATIONS AND CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Appendix 1
    • Appendix 2
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • A-type granite
  • Mantle plume
  • Rifting
  • Central Asian Orogenic Belt
  • Jurassic
  • Geochemistry

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire