Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Geomorphic process rates in the central Atacama Desert, Chile: Insights from cosmogenic nuclides and implications for the onset of hyperaridity

Christa Placzek, Darryl E. Granger, Ari Matmon, Jay Quade and Uri Ryb
American Journal of Science December 2014, 314 (10) 1462-1512; DOI: https://doi.org/10.2475/10.2014.03
Christa Placzek
* Centre for Tropical Environmental and Sustainability Science (TESS) & School of Earth and Environmental Sciences, James Cook University, Townsville, QLD4811, Australia;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: christa.placzek@jcu.edu.au
Darryl E. Granger
** Purdue Rare Isotope Measurement (PRIME) lab, Purdue University, West Lafayette, Indiana 47907, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ari Matmon
*** Ari Matmon, Institute of Earth Sciences, Hebrew University, Jerusalem, 91904, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jay Quade
§ Department of Geosciences, University of Arizona, Tucson, Arizona, 85721, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Uri Ryb
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Abbühl L. M.,
    2. Norton K. P.,
    3. Schlunegger F.,
    4. Kracht O.,
    5. Aldahan A.,
    6. Possnert G.
    , 2010, El Niño forcing on 10Be-based surface denudation rates in the northwestern Peruvian Andes: Geomorphology, v. 123, n. 3, p. 257–268, doi:http://dx.doi.org/10.1016/j.geomorph.2010.07.017
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Ahnert F.
    , 1970, Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins: American Journal of Science, v. 268, n. 3, p. 243–263, doi:http://dx.doi.org/10.2475/ajs.268.3.243
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Alpers C. N.,
    2. Brimhall G. H.
    , 1988, Middle Miocene climatic change in the Atacama Desert, northern Chile: Evidence from supergene mineralization at La Escondida: Geological Society of America Bulletin, v. 100, n. 10, p. 1640–1656, doi:http://dx.doi.org/10.1130/0016-7606(1988)100<1640:MMCCIT>2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Ammann C.,
    2. Jenny B.,
    3. Kammer K.,
    4. Messerli B.
    , 2001, Late Quaternary glacier response to humidity changes in the Andes of Chile (18-29°S): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 172, n. 3–4, p. 313–326, doi:http://dx.doi.org/10.1016/S0031-0182(01)00306-6
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Amundson R.,
    2. Dietrich W.,
    3. Bellugi D.,
    4. Ewing S.,
    5. Nishiizumi K.,
    6. Chong G.,
    7. Owen J.,
    8. Finkel R.,
    9. Heimsath A.,
    10. Stewart B.,
    11. Caffee M.
    , 2012, Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert: Geological Society of America Bulletin, v. 124, n. 7–8, p. 1048–1070, doi:http://dx.doi.org/10.1130/B30445.1
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Arancibia G.,
    2. Matthews S. J.,
    3. Perez de Arce C.
    , 2006, K-Ar and 40Ar/39Ar Geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations: Journal of the Geological Society, v. 163, n. 1, p. 107–118, doi:http://dx.doi.org/10.1144/0016-764904-161
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Audin L.,
    2. Herail G.,
    3. Riquelme R.,
    4. Darrozes J.,
    5. Martinod J.,
    6. Font E.
    , 2003, Geomorphological markers of faulting and neotectonic activity along the western Andean margin, northern Chile: Journal of Quaternary Science, v. 18, n. 8, p. 681–694, doi:http://dx.doi.org/10.1002/jqs.787
    OpenUrlCrossRefGeoRefWeb of Science
  8. ↵
    1. Balco G.,
    2. Rovey C. W. II.
    , 2008, An isochron method for cosmogenic-nuclide dating of buried soil and sediments: American Journal of Science, v. 308, n. 10, p. 1083–1114, doi:http://dx.doi.org/10.2475/10.2008.02
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Balco G.,
    2. Stone J. O.,
    3. Lifton N. A.,
    4. Dunai T. J.
    , 2008, A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements: Quaternary Geochronology, v. 3, n. 3, p. 174–195, doi:http://dx.doi.org/10.1016/j.quageo.2007.12.001
    OpenUrlCrossRefWeb of Science
  10. ↵
    1. Barnes J. B.,
    2. Ehlers T. A.,
    3. McQuarrie N.,
    4. O'Sullivan P. B.,
    5. Pelletier J. D.
    , 2006, Eocene to recent variations in erosion across the central Andean fold-thrust belt, northern Bolivia: implications for plateau evolution: Earth and Planetary Science Letters, v. 248, p. 118–133, doi:http://dx.doi.org/10.1016/j.epsl.2006.05.018
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Betancourt J. L.,
    2. Latorre C.,
    3. Rech J. A.,
    4. Quade. J.,
    5. Rylander K. A.
    , 2000, A 22,000-year record of monsoonal precipitation from northern Chile's Atacama Desert: Science, v. 289, n. 5484, p. 1542–1546, doi:http://dx.doi.org/10.1126/science.289.5484.1542
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Bierman P. R.,
    2. Caffee M. W.
    , 2001, Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, Southern Africa: American Journal of Science, v. 301, n. 4–5, p. 326–358, doi:http://dx.doi.org/10.2475/ajs.301.4-5.326
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Bierman P. R.,
    2. Caffee M. W.
    , 2002, Cosmogenic exposure and erosion history of Australian bedrock landforms: Geological Society of America Bulletin, v. 114, n. 7, p. 787–803, doi:http://dx.doi.org/10.1130/0016-7606(2002)114<0787:CEAEHO>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Carretier S.,
    2. Regard V.,
    3. Vassallo R.,
    4. Aguilar G.,
    5. Martinod J.,
    6. Riquelme R.,
    7. Pepin E.,
    8. Charrier R.,
    9. Hérrail G.,
    10. Farías M.,
    11. Guyot J-L.,
    12. Vargas G.,
    13. Lagane C.
    , 2013, Slope and climate variability control of erosion in the Andes of central Chile: Geology, v. 41, n. 2, p. 195–198, doi:http://dx.doi.org/10.1130/G33735.1
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Chmeleff J.,
    2. von Blanckenburg F.,
    3. Kossert K.,
    4. Jakob D.
    , 2010, Determination of the 10Be- half-life by multicollector ICP-MS and liquid scintillation counting: Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, v. 268, n. 2, p. 192–199, doi:http://dx.doi.org/10.1016/j.nimb.2009.09.012
    OpenUrlCrossRefWeb of Science
  16. ↵
    1. Clapp E. M.,
    2. Bierman P. R.,
    3. Schick A. P.,
    4. Lekach J.,
    5. Enzel Y.,
    6. Caffee M.
    , 2000, Sediment yield exceeds sediment production in arid region drainage basins: Geology, v. 28, n. 11, p. 995–998, doi:http://dx.doi.org/10.1130/0091-7613(2000)28<995:SYESPI>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Clapp E. M.,
    2. Bierman P. R.,
    3. Nichols K. K.,
    4. Pavich M.,
    5. Caffee M.
    , 2001, Rates of sediment supply to arroyos from upland erosion determined using in situ produced cosmogenic 10Be and 26Al: Quaternary Research, v. 55, n. 2, p. 235–245, doi:http://dx.doi.org/10.1006/qres.2000.2211
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    1. Clift P. D.,
    2. Hartley A. J.
    , 2007, Slow rates of subduction erosion and coastal underplating: Geology, v. 35, n. 6, p. 503–506, doi:http://dx.doi.org/10.1130/G23584A.1
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Davis M.,
    2. Matmon A.,
    3. Placzek C. J.,
    4. McIntosh W.,
    5. Rood D. H.,
    6. Quade J.
    , 2014, Cosmogenic nuclides in buried sediments from the hyperarid Atacama Desert, Chile: Quaternary Geochronology, v. 19, p. 117–126, doi:http://dx.doi.org/10.1016/j.quageo.2013.06.006
    OpenUrlCrossRefWeb of Science
  20. ↵
    1. Glynn P. W.
    1. Dillon M. O.,
    2. Rundel P. W.
    , 1990, The botanical response of the Atacama and Peruvian desert floras to the 1982–83 El Niño event, in Glynn P. W., editor, Global Ecological Consequences of the 1982–83 El Niño-Southern Oscillation: Amsterdam, Elsevier, North-Holland Press, p. 487–504.
  21. ↵
    1. Dunai T. J.
    , 2010, Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences: Cambridge, Cambridge University Press, Google eBook.
  22. ↵
    1. Dunai T. J.,
    2. Gonzáles López G. A.,
    3. Juez-Larre J.
    , 2005, Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms: Geology, v. 33, n. 4, p. 321–324, doi:http://dx.doi.org/10.1130/G21184.1
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Evenstar L. A.,
    2. Hartley A. J.,
    3. Stuart F. M.,
    4. Mather A. E.,
    5. Rice C. M.,
    6. Chong G.
    , 2009, Multiphase development of the Atacama Planation Surface recorded by cosmogenic 3He ages: Implications for uplift and Cenozoic climate change: Geology, v. 37, n. 1, p. 27–30, doi:http://dx.doi.org/10.1130/G25437A.1
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Ewing S. A.,
    2. Sutter B.,
    3. Owen J.,
    4. Nishiizumi K.,
    5. Sharp W.,
    6. Cliff S. S.,
    7. Perry K.,
    8. Dietrich W.,
    9. McKay C. P.,
    10. Amundson R.
    , 2006, A threshold in soil formation at Earth's arid—hyperarid transition: Geochimica et Cosmochimica Acta, v. 70, n. 21, p. 5293–5322, doi:http://dx.doi.org/10.1016/j.gca.2006.08.020
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    1. Fujioka T.,
    2. Chappell J.,
    3. Honda M.,
    4. Yatsevich I.,
    5. Fifield K.,
    6. Fabel D.
    , 2005, Global cooling initiated stony deserts in central Australia 2–4 Ma, dated by cosmogenic 21Ne-10Be: Geology, v. 33, n. 12, p. 993–996, doi:http://dx.doi.org/10.1130/G21746.1
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Garzione C. N.,
    2. Molnar P.,
    3. Libarkin J. C.,
    4. MacFadden B. J.
    , 2006, Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere: Earth and Planetary Science Letters, v. 241, n. 3–4, p. 543–556, doi:http://dx.doi.org/10.1016/j.epsl.2005.11.026
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Gosse J. C.,
    2. Phillips F. M.
    , 2001, Terrestrial in situ cosmogenic nuclides: theory and application: Quaternary Science Reviews, v. 20, n. 14, p. 1475–1560, doi:http://dx.doi.org/10.1016/S0277-3791(00)00171-2
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Granger D. E.,
    2. Muzikar P. F.
    , 2001, Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations: Earth and Planetary Science Letters, v. 188, n. 1–2, p. 269–281, doi:http://dx.doi.org/10.1016/S0012-821X(01)00309-0
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Granger D. E.,
    2. Kirchner J. W.,
    3. Finkel R. C.
    , 1997, Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium: Geology, v. 25, n. 2, p. 107–110, doi:http://dx.doi.org/10.1130/0091-7613(1997)025<0107:QDROTN> 2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Granger D. E.,
    2. Lifton N. A.,
    3. Willenbring J. K.
    , 2013, A cosmic trip: 25 years of cosmogenic nuclides in geology: Geological Society of America Bulletin, v. 125, n. 9–10, 1379–1402, doi:http://dx.doi.org/10.1130/B30774.1
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Gonzalez G.,
    2. Cembrano J.,
    3. Carrizo D.,
    4. Macci A.,
    5. Schneider H.
    , 2003, The link between forearc tectonics and Pliocene-Quaternary deformation of the Coastal Cordillera, northern Chile: Journal of South American Earth Sciences, v 16, n. 5, p. 321–342, doi:http://dx.doi.org/10.1016/S0895-9811(03)00100-7
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    1. Hartley A. J.,
    2. Chong G.
    , 2002, Late Pliocene age for the Atacama Desert: Implications for the desertification of western South America: Geology, v. 30, n. 1, p. 43–46, doi:http://dx.doi.org/10.1130/0091-7613(2002)030<0043:LPAFTA>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Bishop P.,
    2. Pillans B.
    1. Heimsath A. M.,
    2. Chappell J.,
    3. Fifield K.
    , 2010, Eroding Australia: rates and processes from Bega Valley to Arnhem Land, in Bishop P., Pillans B., Australian Landscapes: Geological Society, London, Special Publications, v. 346, p. 225–241, doi:http://dx.doi.org/10.1144/SP346.12
    OpenUrlCrossRefWeb of Science
  34. ↵
    1. Hoke G. D.,
    2. Isacks B.L,
    3. Jordan T. E.,
    4. Yu J. S.
    , 2004, Groundwater-sapping origin for the giant quebradas of northern Chile: Geology, v. 32, n. 7, p. 605–608, doi:http://dx.doi.org/10.1130/G20601.1
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Houston J.,
    2. Hartley A. J.
    , 2003, The central Andean west-slope rainshadow and its potential contribution to the origin of hyperarid in the Atacama Desert: International Journal of Climatology, v. 23, n. 12, p. 1453–1464, doi:http://dx.doi.org/10.1002/joc.938
    OpenUrlCrossRefWeb of Science
  36. ↵
    1. Jordan T. E.,
    2. Nester P. L.,
    3. Blanco N.,
    4. Hoke G. D.,
    5. Dávila F.,
    6. Tomlinson A. J.
    , 2010, Uplift of the Altiplano-Puna plateau: A view from the west: Tectonics, v. 29, n. 5, TC5007, 33 p., doi:http://dx.doi.org/10.1029/2010TC002661
    OpenUrlCrossRef
  37. ↵
    1. Jordan T. E.,
    2. Kirk-Lawlor N. E.,
    3. Blanco N.,
    4. Rech J. A.,
    5. Cosentino N. J.
    , 2014, Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile: Geological Society of America Bulletin, B30978-1, doi:http://dx.doi.org/10.1130/B30978.1
    OpenUrlCrossRef
  38. ↵
    1. Jungers M. C.,
    2. Heimsath A. M.,
    3. Amundson R.,
    4. Balco G.,
    5. Shuster D.,
    6. Chong G.
    , 2013, Active erosion–deposition cycles in the hyperarid Atacama Desert of Northern Chile: Earth and Planetary Science Letters, v. 371–372, p. 125–133, doi:http://dx.doi.org/10.1016/j.epsl.2013.04.005
    OpenUrlCrossRef
  39. ↵
    1. Klein J.,
    2. Giegengack R.,
    3. Middleton P.,
    4. Sharma P.,
    5. Underwood J. R. Jr..,
    6. Weeks R. A.
    , 1986, Revealing histories of exposure using in situ produced 26Al and 10Be in Libyan desert glass: Radiocarbon, v. 28, n. 2A, p. 547–555.
    OpenUrlGeoRefWeb of Science
  40. ↵
    1. Kober F.,
    2. Ivy-Ochs S.,
    3. Schlunegger F.,
    4. Baur H.,
    5. Kubik P. W.,
    6. Wieler R.
    , 2007, Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets: Geomorphology, v. 83, n. 1–2, p. 97–120, doi:http://dx.doi.org/10.1016/j.geomorph. 2006.06.029
    OpenUrlCrossRefWeb of Science
  41. ↵
    1. Kober F.,
    2. Ivy-Ochs S.,
    3. Zeilinger G.,
    4. Schlunegger F.,
    5. Kubik P. W.,
    6. Baur H.,
    7. Wieler R.
    , 2009, Complex multiple cosmogenic nuclide concentration and histories in the arid Rio Lluta catchment, northern Chile: Earth Surface Processes and Landforms, v. 34, n. 3, p. 398–412, doi:http://dx.doi.org/10.1002/esp.1748
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. Kohl C. P.,
    2. Nishiizumi K.
    , 1992, Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides: Geochimica et Cosmochimica Acta, v. 56, n. 9, p. 3583–3587, doi:http://dx.doi.org/10.1016/0016-7037(92)90401-4
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Korschinek G.,
    2. Bergmaier A.,
    3. Faestermann T.,
    4. Gerstmann U. C.,
    5. Knie K.,
    6. Rugel G.,
    7. Wallner A.,
    8. Dillmann I.,
    9. Dollinger G.,
    10. von Gostomski C. L.,
    11. Kossert K.,
    12. Maiti M.,
    13. Poutivtsev M.,
    14. Remmert A.
    , 2010, A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting: Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, v. 268, n. 2, p. 187–191, doi:http://dx.doi.org/10.1016/j.nimb.2009.09.020
    OpenUrlCrossRefWeb of Science
  44. ↵
    1. Lal D.
    , 1991, Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models: Earth and Planetary Science Letters, v. 104, n. 2–4, p. 424–439, doi:http://dx.doi.org/10.1016/0012-821X(91)90220-C
    OpenUrlCrossRefGeoRefWeb of Science
  45. ↵
    1. Langbein W. B.,
    2. Schumm S. A.
    , 1958, Yield of sediment in relation to mean annual precipitation: Transactions, American Geophysical Union, v. 39, n. 6, p. 1076–1084.
    OpenUrlCrossRef
  46. ↵
    1. Latorre C.,
    2. Betancourt J. L.,
    3. Rylander K. A.,
    4. Quade J.
    , 2002, Vegetation invasions into Absolute Desert: A 45,000 yr rodent midden record from the Calama-Salar de Atacama Basins, northern Chile (lat 22°-24°S): Geological Society of America Bulletin, v. 114, n. 3, p. 349–366, doi:http://dx.doi.org/10.1130/0016-7606(2002)114<0349:VIIADA>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Smith M.,
    2. Hesse P.
    1. Latorre C.,
    2. Betancourt J. A.,
    3. Rech J. A.,
    4. Quade J.,
    5. Holmgren C.,
    6. Placzek C.,
    7. Maldonado A. J. C.,
    8. Vuille M.,
    9. Rylander K. A.
    , 2005, Late Quaternary history of the Atacama Desert, in Smith M., Hesse P., editors, 23° S- Archaeology and Environmental History of the Southern Deserts: Canberra, Australia, National Museum of Australia Press, p. 73–90.
  48. ↵
    1. Lehmann S. B.
    , ms, 2013, Climatic and tectonic implications of a mid-Miocene landscape: examination of the Tarapaca Pediplain, Atacama Desert, Chile: Oxford, Ohio, Miami University, M S Thesis, 128 p.
  49. ↵
    1. Matmon A.,
    2. Bierman P. R.,
    3. Larsen J.,
    4. Southworth S.,
    5. Pavich M.,
    6. Finkel R.,
    7. Caffee M.
    , 2003, Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee: American Journal of Science, v. 303, n. 9, p. 817–855, doi:http://dx.doi.org/10.2475/ajs.303.9.817
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Matmon A.,
    2. Simhai O.,
    3. Amit R.,
    4. Haviv I.,
    5. Porat N.,
    6. McDonald E.,
    7. Benedetti L.,
    8. Finkel R.
    , 2009, Desert pavement-coated surfaces in extreme deserts present the longest-lived landforms on Earth: Geological Society of America Bulletin, v. 121, n. 5–6, p. 688–697, doi:http://dx.doi.org/10.1130/B26422.1
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Nichols K. K.,
    2. Bierman P. R.,
    3. Hooke R. LeB.,
    4. Clapp E. M.,
    5. Caffee M.
    , 2002, Quantifying sediment transport on desert piedmonts using 10Be and 26Al: Geomorphology, v. 45, n. 1–2, p. 105–125, doi:http://dx.doi.org/10.1016/S0169-555X(01)00192-1
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Nichols K. K.,
    2. Bierman P. R.,
    3. Foniri W. R.,
    4. Gillespie A. R.,
    5. Caffee M.,
    6. Finkel R.
    , 2006, Dates and rates of arid region geomorphic processes: GSA Today, v. 16, n. 8, p. 4–11, doi:http://dx.doi.org/10.1130/GSAT01608.1
    OpenUrlCrossRefGeoRef
  53. ↵
    1. Nishiizumi K.,
    2. Caffee M. W.,
    3. Finkel R. C.,
    4. Brimhall G.,
    5. Mote T.
    , 2005, Remnants of a fossil alluvial fan landscape of Miocene age in the Atacama Desert of northern Chile using cosmogenic nuclide exposure age dating: Earth and Planetary Science Letters, v. 237, n. 3–4, p. 499–507, doi:http://dx.doi.org/10.1016/j.epsl.2005.05.032
    OpenUrlCrossRefGeoRefWeb of Science
  54. ↵
    1. Nishiizumi K.,
    2. Imamura M.,
    3. Caffee M. W.,
    4. Southon J. R.,
    5. Finkel R. C.,
    6. McAninch J.
    , 2007, Absolute calibration of 10Be AMS standards: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 258, n. 2, p. 403–413, doi:http://dx.doi.org/10.1016/j.nimb.2007.01.297
    OpenUrlCrossRefWeb of Science
  55. ↵
    1. Ortlieb L.,
    2. Zazo C.,
    3. Goy J. L.,
    4. Hillaire-Marcel C.,
    5. Ghaleb B.,
    6. Cournoyer L.
    , 1996, Coastal deformation and sea-level changes in the northern Chile subduction area (23°S) during the last 330 ky: Quaternary Science Reviews, v. 15, n. 8–9, p. 819–831, doi:http://dx.doi.org/10.1016/S0277-3791(96)00066-2
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Owen J. J.,
    2. Amundson R.,
    3. Dietrich W. E.,
    4. Nishiizumi K.,
    5. Sutter B.,
    6. Chong G.
    , 2011, The sensitivity of hillsope bedrock erosion to precipitation: Earth Surface Processes and Landforms, v. 36, n. 1, p. 117–135, doi:http://dx.doi.org/10.1002/esp.2083
    OpenUrlCrossRefGeoRefWeb of Science
  57. ↵
    1. Owen J. J.,
    2. Dietrich W. E.,
    3. Nishiizumi K.,
    4. Chong G.,
    5. Amundson R.
    , 2013, Zebra stripes in the Atacama Desert: Fossil evidence of overland flow: Geomorphology, v. 182, p. 157–172, doi:http://dx.doi.org/10.1016/j.geomorph.2012.11.006
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    1. Pananont P.,
    2. Mpodozis C.,
    3. Blanco N.,
    4. Jordan T. E.,
    5. Brown L. D.
    , 2004, Cenozoic evolution of the northwestern Salar de Atacama Basin, northern Chile: Tectonics, v. 23, n. 6, TC6007, doi:http://dx.doi.org/10.1029/2003TC001595
    OpenUrlCrossRef
  59. ↵
    1. Portenga E.,
    2. Bierman P. R.
    , 2011, Understanding Earth's Eroding Surface with 10Be: GSA Today, v. 21, p. 4–10, doi:http://dx.doi.org/10.1130/G111A.1
    OpenUrlCrossRefGeoRef
  60. ↵
    1. Placzek C.,
    2. Quade J.,
    3. Betancourt J. L.,
    4. Patchett P. J.,
    5. Rech J. A.,
    6. Latorre C.,
    7. Matmon A.,
    8. Holmgren C.,
    9. English N. B.
    , 2009a, Climate in the dry, central Andes over geologic, millennial, and interannual timescales: Annals of the Missouri Botanical Garden, v. 96, p. 386–397, doi:http://dx.doi.org/10.3417/2008019
    OpenUrlCrossRefWeb of Science
  61. ↵
    1. Placzek C.,
    2. Quade J.,
    3. Rech J. A.,
    4. Patchett P. J.,
    5. Pérez de Arce C.
    , 2009b, Geochemistry, chronology and stratigraphy of Neogene tuffs of the Central Andean region: Quaternary Geochronology, v. 4, n. 1, p. 22–36, doi:http://dx.doi.org/10.1016/j.quageo.2008.06.002
    OpenUrlCrossRefWeb of Science
  62. ↵
    1. Placzek C. J.,
    2. Matmon A.,
    3. Granger D. E.,
    4. Quade J.,
    5. Niedermann S.
    , 2010, Evidence for active landscape evolution in the hyperarid Atacama measured from multiple terrestrial cosmogenic nuclides: Earth and Planetary Science Letters, v. 295, n. 1–2, p. 12–20, doi:http://dx.doi.org/10.1016/j.epsl. 2010.03.006
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Placzek C. J.,
    2. Quade J.,
    3. Patchett P. J.
    , 2013, A 130 ka record of rainfall on the Bolivian Altiplano: Earth and Planetary Science Letters, v. 363, p. 97–108, doi:http://dx.doi.org/10.1016/j.epsl.2012.12.017
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Quade J.
    , 2001, Desert pavements and associated rock varnish in the Mojave Desert: How old can they be?: Geology, v. 29, n. 9, p. 855–858, doi:http://dx.doi.org/10.1130/0091-7613(2001)029<0855:DPAARV> 2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Quade J.,
    2. Reiners P.,
    3. Placzek C.,
    4. Matmon A.,
    5. Pepper M.,
    6. Ojha K.,
    7. Murray K.
    , 2012, Seismicity and the strange rubbing boulders of the Atacama Desert, northern Chile: Geology, v. 40, n. 9, p. 851–854, doi:http://dx.doi.org/10.1130/G33162.1
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Rech J. A.,
    2. Quade J.,
    3. Betancourt J. L.
    , 2002, Late Quaternary paleohydrology of the central Atacama Desert (lat 22°-24°S), Chile: Geological Society of America Bulletin, v. 114, n. 3, p. 334–348, doi:http://dx.doi.org/10.1130/0016-7606(2002)114<0334:LQPOTC>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Rech J. A.,
    2. Currie B. S.,
    3. Michalski G.,
    4. Cowan A. M.
    , 2006, Neogene climate change and uplift in the Atacama Desert, Chile: Geology, v. 34, n. 9, p. 761–764, doi:http://dx.doi.org/10.1130/G22444.1
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Riebe C. S.,
    2. Kirchener J. W.,
    3. Granger D. E.,
    4. Finkel R. C.
    , 2001a, Strong tectonic and weak climatic control of long-term chemical weathering rates: Geology, v. 29, n. 6, p. 511–514, doi:http://dx.doi.org/10.1130/0091-7613(2001)029<0511:STAWCC>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Riebe C. S.,
    2. Kirchener J. W.,
    3. Granger D. E.,
    4. Finkel R. C.
    , 2001b, Minimal climatic control on erosion rates in the Sierra Nevada, California: Geology, v. 29, n. 5, p. 447–450, doi:http://dx.doi.org/0.1130/0091-7613(2001)029<00447:MCCOER>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Riebe C. S.,
    2. Kirchner J. W.,
    3. Finkel C. R.
    , 2003, Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance: Geochimica et Cosmochimica Acta, v. 67, n. 22, p. 4411–4427, doi:http://dx.doi.org/10.1016/S0016-7037(03)00382-X
    OpenUrlCrossRefGeoRefWeb of Science
  71. ↵
    1. Scheuber E.,
    2. Andriessen P. A. M.
    , 1990, The kinematic and geodynamic significance of the Atacama Fault zone, northern, Chile: Journal of Structural Geology, v. 12, n. 2, p. 243–257, doi:http://dx.doi.org/10.1016/0191-8141(90)90008-M
    OpenUrlCrossRefGeoRefWeb of Science
  72. ↵
    1. Stone J. O.
    , 2000, Air pressure and cosmogenic isotope production: Journal of Geophysical Research-Solid Earth, v. 105, n. B10, p. 23753–23759, doi:http://dx.doi.org/10.1029/2000JB900181
    OpenUrlCrossRefWeb of Science
  73. ↵
    1. von Blanckenburg F.
    , 2006, The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment: Earth and Planetary Science Letters, v. 242, n. 3–4, p. 224–239, doi:http://dx.doi.org/10.1016/j.epsl.2005.11.017
    OpenUrlCrossRef
  74. ↵
    1. von Blanckenburg F.,
    2. Belshaw N. S.,
    3. O'Nions R. K.
    , 1996, Separation of 9Be and cosmogenic10Be from environmental materials and SIMS isotope dilution analysis: Chemical Geology, v. 129, n. 1–2, p. 93–99, doi:http://dx.doi.org/10.1016/0009-2541(95)00157-3
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    1. Vuille M.,
    2. Ammann C.
    , 1997, Regional snowfall patterns in the high, arid Andes: Climatic Change, v. 36, n. 3–4, p. 413–423, doi:http://dx.doi.org/10.1023/A:1005330802974
    OpenUrlCrossRefGeoRefWeb of Science
  76. ↵
    1. Vuille M.,
    2. Keimig F.
    , 2004, Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data: Journal of Climate, v. 17, n. 17, p. 3334–3348, doi:http://dx.doi.org/10.1175/1520-0442(2004)017<3334:IVOSCC>2.0.CO;2
    OpenUrlCrossRefWeb of Science
  77. ↵
    1. Willenbring J. K.,
    2. Codilean A. T.,
    3. McElroy B.
    , 2013, Earth is (mostly) flat: Apportionment of the flux of continental sediment over millennial time scales: Geology, v. 41, n. 3, p. 343–346, doi:http://dx.doi.org/10.1130/G33918.1
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. Zhou J.,
    2. Lau K.-M.
    , 1998, Does a monsoon climate exist over South America?: Journal of Climate, v. 11, n. 5, p. 1020–1040, doi:http://dx.doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2
    OpenUrlCrossRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 314 (10)
American Journal of Science
Vol. 314, Issue 10
1 Dec 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Geomorphic process rates in the central Atacama Desert, Chile: Insights from cosmogenic nuclides and implications for the onset of hyperaridity
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
15 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Geomorphic process rates in the central Atacama Desert, Chile: Insights from cosmogenic nuclides and implications for the onset of hyperaridity
Christa Placzek, Darryl E. Granger, Ari Matmon, Jay Quade, Uri Ryb
American Journal of Science Dec 2014, 314 (10) 1462-1512; DOI: 10.2475/10.2014.03

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Geomorphic process rates in the central Atacama Desert, Chile: Insights from cosmogenic nuclides and implications for the onset of hyperaridity
Christa Placzek, Darryl E. Granger, Ari Matmon, Jay Quade, Uri Ryb
American Journal of Science Dec 2014, 314 (10) 1462-1512; DOI: 10.2475/10.2014.03
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • STUDY AREA
    • CLIMATE
    • METHODS
    • TRANSECT FEATURES
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Leave no stone unturned: The hidden potential of carbon and nitrogen cycling by novel, highly adapted Thaumarchaeota in the Atacama Desert hyperarid core
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Atacama
  • erosion
  • cosmogenic nuclides
  • climate
  • precipitation

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire