Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera

Ran Feng, Christopher J. Poulsen, Martin Werner, C. Page Chamberlain, Hari T. Mix and Andreas Mulch
American Journal of Science September 2013, 313 (7) 613-648; DOI: https://doi.org/10.2475/07.2013.01
Ran Feng
* Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005, USA;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: rfeng@umich.edu
Christopher J. Poulsen
* Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005, USA;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: rfeng@umich.edu
Martin Werner
** Alfred Wegener Institute for Polar and Marine Research (AWI) Bussestrasse 24, D-27570 Bremerhaven, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Page Chamberlain
*** Department of Environmental Earth System Science, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hari T. Mix
*** Department of Environmental Earth System Science, Stanford University, Stanford, California 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andreas Mulch
§ Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt, Germany
§§ Goethe University Frankfurt, Institute of Geosciences, Altenhoeferallee1, 60438 Frankfurt, Germany
§§§ Senckenberg, Senckenberganlage 25, 60325 Frankfurt, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

    1. Andreasson F. P.,
    2. Schmitz B.
    , 1998, Tropical Atlantic seasonal dynamics in the Early Middle Eocene from stable oxygen and carbon isotope profiles of mollusk shells: Paleoceanography, v. 13, n. 2, p. 183–192, doi:http://dx.doi.org/10.1029/98PA00120
    OpenUrlCrossRefGeoRefWeb of Science
    1. Andreasson F. P.,
    2. Schmitz B.
    , 2000, Temperature seasonality in the early middle Eocene North Atlantic region: Evidence from stable isotope profiles of marine gastropod shells: Geological Society of America Bulletin, v. 112, n. 4, p. 628–640, doi:http://dx.doi.org/10.1130/0016-7606(2000)112〈628:TSITEM〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  1. ↵
    1. Barker P. F.,
    2. Diekmann B.,
    3. Escutia C.
    , 2007, Onset of Cenozoic Antarctic glaciation: Deep-Sea Research II, v. 54, n. 21–22, p. 2293–2307, doi:http://dx.doi.org/10.1016/j.dsr2.2007.07.027
    OpenUrlCrossRef
    1. Beerling D. J.,
    2. Royer D. L.
    , 2011, Convergent Cenozoic CO2 history: Nature Geoscience, v. 4, p. 418–420, doi:http://dx.doi.org/10.1038/ngeo1186
    OpenUrlCrossRefWeb of Science
  2. ↵
    1. Bice K. L.,
    2. Scotese C. R.,
    3. Seidov D.,
    4. Barron E. J.
    , 2000, Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 161, n. 34, p. 295–310, doi:http://dx.doi.org/10.1016/S0031-0182(00)00072-9
    OpenUrlCrossRefGeoRef
  3. ↵
    1. Blisniuk P. M.,
    2. Stern L. A.
    , 2005, Stable isotope paleoaltimetry: A critical review: American Journal of Science, v. 305, n. 10, p. 1033–1074, doi:http://dx.doi.org/10.2475/ajs.305.10.1033
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Bolton D.
    , 1980, The computation of equivalent potential temperature: Monthly Weather Review, v. 108, p. 1046–1053, doi:http://dx.doi.org/10.1175/1520-0493(1980)108〈1046:TCOEPT〉2.0.CO;2
    OpenUrlCrossRefWeb of Science
  5. ↵
    1. Bowen G. J.,
    2. Daniels A. D.,
    3. Bowen B. B.
    , 2008, Paleoenvironmental isotope geochemistry and paragenesis of lacustrine and palustrine carbonates, Flagstaff Formation, Central Utah, U.S.A.: Journal of Sedimentary Research, v. 78, n. 3, p. 162–174, doi:http://dx.doi.org/10.2110/jsr.2008.021
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Bown T. M.,
    2. Kraus M. J.
    , 1981, Lower Eocene alluvial paleosols (Willwood Formation, Northwest Wyoming, U.S.A.) and their significance for paleoecology, palcoclimatology and basin analysis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 34, p. 1–30, doi:http://dx.doi.org/10.1016/0031-0182(81)90056-0
    OpenUrlCrossRefGeoRef
    1. Brinkhuis H.,
    2. Schouten S.,
    3. Collinson M. E.,
    4. Sluijs A.,
    5. Sinninghe-Damsté J. S.,
    6. Dickens G. R.,
    7. Huber M.,
    8. Cronin T. M.,
    9. Onodera J.,
    10. Takahashi K.,
    11. Bujak J. P.,
    12. Stein R.,
    13. van der Burgh J.,
    14. Eldrett J. S.,
    15. Harding I. C.,
    16. Lotter A. F.,
    17. Sangiorgi F.,
    18. van Konijnenburg-van Cittert H.,
    19. de Leeuw J. W.,
    20. Matthiessen J.,
    21. Backman J.,
    22. Moran K.
    , the Expedition 302 Scientists, 2006, Episodic fresh surface waters in the Eocene Arctic Ocean: Nature, v. 441, p. 606–609, doi:http://dx.doi.org/10.1038/nature04692
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  7. ↵
    1. Chamberlain C. P.,
    2. Mix H. T.,
    3. Mulch A.,
    4. Hren M. T.,
    5. Kent-Corson M. L.,
    6. Davis S. J.,
    7. Horton T. W.,
    8. Graham S. A.
    , 2012, The Cenozoic climatic and topographic evolution of the Western North America Cordillera: American Journal of Science, v. 312, n. 2, p. 213–262, doi:http://dx.doi.org/10.2475/02.2012.05
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Crowley T. J.,
    2. Burke K.
    1. Chase C. G.,
    2. Gregory-Wodzicki K. M.,
    3. Parrish-Jones J. T.,
    4. DeCelles P. G.
    , 1998, Topographic history of the western Cordillera of North America and controls on climate, in Crowley T. J., Burke K. , editors, Tectonic boundary conditions for climate model simulations: New York, Oxford University Press, Oxford Monographs on Geology and Geophysics, p. 73–99.
  9. ↵
    1. Clark M. K.
    , 2007, The significance of paleotopography: Reviews in Mineralogy and Geochemistry, v. 66, n. 1, p. 1–21, doi:http://dx.doi.org/10.2138/rmg.2007.66.1
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Clementz M. T.,
    2. Sewall J. O.
    , 2011, Latitudinal gradients in greenhouse seawater δ18O: Evidence from Eocene Sirenian tooth enamel: Science, v. 332, n. 6028, p. 455–458, doi:http://dx.doi.org/10.1126/science.1201182
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Cook K. H.,
    2. Edward E. K.,
    3. Launer Z. S.,
    4. Patricola C. M.
    , 2008, Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century: Journal of Climate, v. 21, p. 6321–6340, doi:http://dx.doi.org/10.1175/2008JCLI2355.1
    OpenUrlCrossRefWeb of Science
  12. ↵
    1. Davis S. J.,
    2. Mix H. T.,
    3. Wiegand B. A.,
    4. Carroll A. R.,
    5. Chamberlain C. P.
    , 2009, Synorogenic evolution of large-scale drainage patterns: Isotope paleohydrology of sequential Laramide basins: American Journal of Science, v. 309, n. 7, p. 549–602, doi:http://dx.doi.org/10.2475/07.2009.02
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. DeCelles P. G.
    , 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA: American Journal of Science, v. 304, n. 2, p. 105–168, doi:http://dx.doi.org/10.2475/ajs.304.2.105
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Dettman D. L.,
    2. Lohmann K. C.
    , 2000, Oxygen isotope evidence for high-altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene: Geology, v. 28, n. 3, p. 243–246, doi:http://dx.doi.org/10.1130/0091-7613(2000)28〈243:OIEFHS〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Dickinson W. R.
    , 2004, Evolution of the North American cordillera: Annual Review of Earth and Planetary Sciences, v. 32, p. 13–45, doi:http://dx.doi.org/10.1146/annurev.earth.32.101802.120257
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. Dickinson W. R.,
    2. Klute M. A.,
    3. Hayes M. J.,
    4. Janecke S. U.,
    5. Lundin E. R.,
    6. McKittrick M. A.,
    7. Olivares M. D.
    , 1988, Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region: Geological Society of America Bulletin, v. 100, n. 7, p. 1023–1039, doi:http://dx.doi.org/10.1130/0016-7606(1988)100〈1023:PAPSOL〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Dirmeyer P. A.,
    2. Brubaker K. L.
    , 1999, Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993: Journal of Geophysical Research—Atmospheres, v. 104, n. D16, p. 19383–19397, doi:http://dx.doi.org/10.1029/1999JD900222
    OpenUrlCrossRefWeb of Science
  18. ↵
    1. Ehlers T. A.,
    2. Poulsen C. J.
    , 2009, Influence of Andean uplift on climate paleoaltimetry estimates: Earth and Planetary Science Letters, v. 281, n. 3–4, p. 238–248, doi:http://dx.doi.org/10.1016/j.epsl.2009.02.026
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Forte A. M.,
    2. Moucha R.,
    3. Simmons N. A.,
    4. Grand S. P.,
    5. Mitrovica J. X.
    , 2010, Deep-mantle contributions to the surface dynamics of the North American continent: Tectonophysics, v. 481, n. 1–4, p. 3–15, doi:http://dx.doi.org/10.1016/j.tecto.2009.06.010
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Frankenberg C.,
    2. Yoshimura K.,
    3. Warneke T.,
    4. Aben I.,
    5. Butz A.,
    6. Deutscher N.,
    7. Griffth D.,
    8. Hase F.,
    9. Notholt J.,
    10. Schneider M.,
    11. Schrijver H.,
    12. Roeckmann T.
    , 2009, Dynamic Processes Governing Lower-Tropospheric HDO/H2O ratios as observed from space and ground: Science, v. 325, n. 5946, p. 1374–1377, doi:http://dx.doi.org/10.1126/science.1173791
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Fricke H. C.
    , 2003, Investigation of early Eocene water-vapor transport and paleoelevation using oxygen isotope data from geographically widespread mammal remains: Geological Society of America Bulletin, v. 115, n. 9, p. 1088–1096, doi:http://dx.doi.org/10.1130/B25249.1
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Fricke H. C.,
    2. Wing S. L.
    , 2004, Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene: American Journal of Science, v. 304, n. 7, p. 612–635, doi:http://dx.doi.org/10.2475/ajs.304.7.612
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Fricke H. C.,
    2. Foreman B. Z.,
    3. Sewall J. O.
    , 2010, Integrated climate model-oxygen isotope evidence for a North American monsoon during the Late Cretaceous: Earth and Planetary Science Letters, v. 289, p. 11–21, doi:http://dx.doi.org/10.1016/j.epsl.2009.10.018
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Galewsky J.
    , 2009, Orographic precipitation isotopic ratios in stratified atmospheric flows: Implications for paleoelevation studies: Geology, v. 37, n. 9, p. 791–794, doi:http://dx.doi.org/10.1130/G30008A.1
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Galloway W. E.,
    2. Whiteaker T. L.,
    3. Ganey-Curry P.
    , 2011, History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin: Geosphere, v. 7, n. 4, p. 938–973, doi:http://dx.doi.org/10.1130/GES00647.1
    OpenUrlAbstract/FREE Full Text
    1. Garzione C. N.,
    2. Molnar P.,
    3. Libarkin J. C.,
    4. MacFadden B. J.
    , 2006, Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere: Earth and Planetary Science Letters, v. 241, n. 3–4, p. 543–556, doi:http://dx.doi.org/10.1016/j.epsl.2005.11.026
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Gat J. R.
    1. Gat J. R.
    , 2010, Snow and snowmelt processes, in Gat J. R. , Isotope Hydrology: A Study of the Water Cycle: World Scientific, p. 67–69, doi:http://dx.doi.org/10.1142/9781848164741_0007
    OpenUrlCrossRef
  27. ↵
    1. Gat J. R.,
    2. Rietti-Shati M.
    , 1999, The meteorological vs. the hydrological altitude effect on the isotopic composition of meteoric waters, in IAEA-CSP2/C, editors, Isotope techniques in water resources development and management: IAEA-Symposium, paper n. SM-361/2.
  28. ↵
    1. Gedzelman S. D.
    , 1988, Deuterium in water vapor above the atmospheric boundary layer: Tellus B, v. 40, n. 2, p. 134–147, doi:http://dx.doi.org/10.1111/j.1600-0889.1988.tb00217.x
    OpenUrlCrossRef
  29. ↵
    1. Greenwood D. R.,
    2. Wing S. L.
    , 1995, Eocene continental climates and latitudinal temperature-gradients: Geology, v. 23, p. 1044–1048, doi:http://dx.doi.org/10.1130/0091-7613(1995)023〈1044:ECCALT〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Hagemann S.
    , 2002, An improved land surface parameter dataset for global and regional climate models: Max Planck Institute for Meteorology, Report No. 336, p. 21.
  30. ↵
    1. Heinemann M.,
    2. Jungclaus J. H.,
    3. Marotzke J.
    , 2009, Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM: Climate of the Past, v. 5, p. 785–802, doi:http://dx.doi.org/10.5194/cp-5-785-2009
    OpenUrlCrossRefWeb of Science
  31. ↵
    1. Hoffmann G.,
    2. Werner M.,
    3. Heimann M.
    , 1998, Water isotope module of the ECHAM atmospheric general circulation model—A study on timescales from days to several years: Journal of Geophysical Research, v. 103, n. D14, p. 16871–16896, doi:http://dx.doi.org/10.1029/98JD00423
    OpenUrlCrossRefWeb of Science
  32. ↵
    1. Hoffmann G.,
    2. Jouzel J.,
    3. Masson V.
    , 2000, Stable water isotopes in atmospheric general circulation models: Hydrological Processes, v. 14, n. 8, p. 1385–1406, doi:http://dx.doi.org/10.1002/1099-1085 (20000615)14:8〈1385::AID-HYP989〉3.0.CO;2-1
    OpenUrlCrossRefWeb of Science
    1. Holton J. R.
    , 2004, Moisture variables, in An introduction to dynamic meteorology: Waltham, Massachusetts, Academic press, p. 503.
  33. ↵
    1. Horton T. W.,
    2. Sjostrom D. J.,
    3. Abruzzese M. J.,
    4. Poage M. A.,
    5. Waldbauer J. R.,
    6. Hren M.,
    7. Wooden J.,
    8. Chamberlain C. P.
    , 2004, Spatial and temporal variation of the Cenozoic surface elevation in the Great Basin and Sierra Nevada: American Journal of Science, v. 304, n. 10, p. 862–888, doi:http://dx.doi.org/10.2475/ajs.304.10.862
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Humphreys E. D.
    , 1995, Post-Laramide removal of the Farallon slab, western United States: Geology, v. 23, n. 11, p. 987–990, doi:http://dx.doi.org/10.1130/0091-7613(1995)023〈0987:PLROTF〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Insel N.,
    2. Poulsen C. J.,
    3. Ehlers T. A.
    , 2009, Influence of the Andes Mountains on South American moisture transport, convection, and precipitation: Climate Dynamics, v. 35, n. 7–8, p. 1477–1492, doi:http://dx.doi.org/10.1007/s00382-009-0637-1
    OpenUrlCrossRefWeb of Science
  36. ↵
    1. Insel N.,
    2. Poulsen C. J.,
    3. Ehlers T. A.,
    4. Sturm C.
    , 2012, Response of meteoric δ18O to surface uplift—Implications for Cenozoic Andean Plateau growth: Earth and Planetary Science Letters, v. 317–318, p. 262–272, doi:http://dx.doi.org/10.1016/j.epsl.2011.11.039
    OpenUrlCrossRef
    1. Ivany L. C.,
    2. Lohmann K. C.,
    3. Hasiuk F.,
    4. Blake D. B.,
    5. Glass A.,
    6. Aronson R. B.,
    7. Moody R. M.
    , 2008, Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica: Geological Society of America Bulletin, v. 120, n. 5–6, p. 659–678, doi:http://dx.doi.org/10.1130/B26269.1
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Jeffery M. L.,
    2. Poulsen C. J.,
    3. Ehlers T. A.
    , 2012, Impacts of global cooling, surface uplift and an inland seaway on South American paleoclimate and precipitation δ18O: Geological Society of America Bulletin, v. 124, n. 3–4, p. 335–351, doi:http://dx.doi.org/10.1130/B30480.1
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Jouzel J.,
    2. Merlivat L.
    , 1984, Deuterium and oxygen-18 in precipitation: Modeling of the isotopic effects during snow formation: Journal of Geophysical Research—Atmospheres, v. 89, n. D7, doi:http://dx.doi.org/10.1029/JD089iD07p11749
    OpenUrlCrossRef
  39. ↵
    1. Kharin V. V.,
    2. Zwiers F. W.,
    3. Zhang X.,
    4. Hegerl G. C.
    , 2007, Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations: Journal of Climate, v. 20, p. 1419–1444, doi:http://dx.doi.org/10.1175/JCLI4066.1
    OpenUrlCrossRefWeb of Science
  40. ↵
    1. Koch P. L.,
    2. Zachos J. C.,
    3. Dettman D. L.
    , 1995, Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin, (Wyoming, U.S.A.): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 115, n. 1–4, p. 61–89, doi:http://dx.doi.org/10.1016/0031-0182(94)00107-J
    OpenUrlCrossRefGeoRef
  41. ↵
    1. Kurita N.,
    2. Yoshida N.,
    3. Inoue G.,
    4. Chayanova E. A.
    , 2004, Modern isotope climatology of Russia: A first assessment: Journal of Geophysical Research, v. 109, n. D031023, p. 1984–2012, doi:http://dx.doi.org/10.1029/2003JD003404
    OpenUrlCrossRef
  42. ↵
    1. Lechler A. R.,
    2. Galewsky J.
    , 2013, Refining paleoaltimetry reconstructions of the Sierra Nevada, California, using air parcel trajectories: Geology, v. 41, n. 2, p. 259–262, doi:http://dx.doi.org/10.1130/G33553.1
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Lechler A. R.,
    2. Niemi N. A.
    , 2011, Controls on the spatial variability of modern meteoric δ18O: Empirical constraints from the western US and east Asia and implications for stable isotope studies: American Journal of Science, v. 311, n. 8, p. 664–700, doi:http://dx.doi.org/10.2475/08.2011.02
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Majoube M.
    , 1971, Fractionnement en oxygen 18 et en deuterium entre l'eau et sa vapeur: Journal de Chimie et de Physique, v. 68, n. 10, p. 1423–1436.
    OpenUrlWeb of Science
  45. ↵
    1. Mix H. T.,
    2. Mulch A.,
    3. Kent-Corson M. L.,
    4. Chamberlain C. P.
    , 2011, Cenozoic migration of topography in the North American Cordillera: Geology, v. 39, n. 1, p. 87–90, doi:http://dx.doi.org/10.1130/G31450.1
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Morrill C.,
    2. Koch P. L.
    , 2002, Elevation or alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the Eocene Green River Basin: Geology, v. 30, n. 2, p. 151–154, doi:http://dx.doi.org/10.1130/0091-7613(2002)030〈0151:EOAEOI〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Moser H.,
    2. Stichler W.
    , 1971, Die Verwendung des Deuterium- und Sauerstoff-18-Gehalts bei hydrologischen Untersuchungen: Geologica Bavaria, v. 64, p. 7–35.
    OpenUrl
  48. ↵
    1. Mulch A.,
    2. Graham S. A.,
    3. Chamberlain C. P.
    , 2006, Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada: Science, v. 313, n. 5783, p. 87–89, doi:http://dx.doi.org/10.1126/science.1125986
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Mulch A.,
    2. Teyssier C.,
    3. Cosca M. A.,
    4. Chamberlain C. P.
    , 2007, Stable isotope paleoaltimetry of Eocene Core Complexes in the North American Cordillera: Tectonics, v. 26, n. 4, TC4001, doi:http://dx.doi.org/10.1029/2006TC001995
    OpenUrlCrossRef
  50. ↵
    1. Norris R. D.,
    2. Jones L. S.,
    3. Corfield R. M.,
    4. Cartlidge J. E.
    , 1996, Skiing in the Eocene Uinta Mountains? Isotopic evidence in the Green River Formation for snow melt and large mountains: Geology, v. 24, n. 5, p. 403–403, doi:http://dx.doi.org/10.1130/0091-7613(1996)024〈0403:SITEUM〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Pearson P. N.,
    2. van Dongen B. E.,
    3. Nicholas C. J.,
    4. Pancost R. D.,
    5. Schouten S.,
    6. Singano J. M.,
    7. Wade B. S.
    , 2007, Stable warm tropical climate through the Eocene Epoch: Geology, v. 35, n. 3, p. 211–214, doi:http://dx.doi.org/10.1130/G23175A.1
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Peppe D. J.,
    2. Royer D. L.,
    3. Wilf P.,
    4. Kowalski E. A.
    , 2010, Quantification of large uncertainties in fossil leaf paleoaltimetry: Tectonics, v. 29, n. 3, TC3015, doi:http://dx.doi.org/10.1029/2009TC002549
    OpenUrlCrossRef
  52. ↵
    1. Pierrehumbert R. T.
    , 1998, Lateral mixing as a source of subtropical water vapor: Geophysical Research Letters, v. 25, n. 2, p. 151–154, doi:http://dx.doi.org/10.1029/97GL03563
    OpenUrlCrossRefWeb of Science
  53. ↵
    1. Pierrehumbert R. T.,
    2. Yang H.
    , 1993, Global Chaotic Mixing on Isentropic Surfaces: Journal of Atmospheric Science, v. 50, n. 15, p. 2462–2480, doi:http://dx.doi.org/10.1175/1520-0469(1993)050〈2462:GCMOIS〉2.0.CO;2
    OpenUrlCrossRefWeb of Science
  54. ↵
    1. Poage M. A.,
    2. Chamberlain C. P.
    , 2001, Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change: American Journal of Science, v. 301, n. 1, p. 1–15, doi:http://dx.doi.org/10.2475/ajs.301.1.1
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Poulsen C. J.,
    2. Jeffery M. L.
    , 2011, Climate change imprinting on stable isotopic compositions of high-elevation meteoric water cloaks past surface elevations of major orogens: Geology, v. 39, n. 6, p. 595–598, doi:http://dx.doi.org/10.1130/G32052.1
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Barrera E.,
    2. Johnson C. C.
    1. Poulsen C. J.,
    2. Barron E. J.,
    3. Johnson C. C.,
    4. Fawcett P.
    , 1999, Links between major climatic factors and regional oceanic circulation in the mid-Cretaceous, in Barrera E., Johnson C. C. , editors, Evolution of the Cretaceous Ocean-Climate System: Geological Society of America Special Paper, v. 332, p. 73–89, doi:http://dx.doi.org/10.1130/0-8137-2332-9.73
    OpenUrlCrossRef
  57. ↵
    1. Poulsen C. J.,
    2. Ehlers T. A.,
    3. Insel N.
    , 2010, Onset of convective rainfall during gradual Late Miocene rise of the Central Andes: Science, v. 328, n. 5977, p. 490–493, doi:http://dx.doi.org/10.1126/science.1185078
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Risi C.,
    2. Bony S.,
    3. Vimeux F.
    , 2008, Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and atmospheric water in the tropics: 2. Physical interpretation of the amount effect: Journal of Geophysical Research, v. 113, D19306, doi:http://dx.doi.org/10.1029/2008JD009943
    OpenUrlCrossRef
  59. ↵
    1. Roeckner E.,
    2. Bäuml G.,
    3. Bonaventura L.,
    4. Brokopf R.,
    5. Esch M.,
    6. Giorgetta M.,
    7. Hagemann S.,
    8. Kirchner I.,
    9. Kornblueh L.,
    10. Manzini E.,
    11. Rhodin A.,
    12. Schlese U.,
    13. Schulzweida U.,
    14. Tompkins A.
    , 2003, The atmospheric general circulation model ECHAM5. Part I: Model description: Hamburg, Germany, Max-Planck-Institut für Meterologie, MPI-Rep. v. 349, 140 p.
  60. ↵
    1. Rowley D. B.
    , 2007, Stable isotope-based paleoaltimetry: theory and validation: Reviews in Mineralogy and Geochemistry, v. 66, n. 1, p. 23–52, doi:http://dx.doi.org/10.2138/rmg.2007.66.2
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Rowley D. B.,
    2. Garzione C. N.
    , 2007, Stable Isotope-based paleoaltimetry: Annual Review of Earth and Planetary Sciences, v. 35, p. 463–508, doi:http://dx.doi.org/10.1146/annurev.earth.35.031306.140155
    OpenUrlCrossRefGeoRefWeb of Science
  62. ↵
    1. Salathé E. P. Jr..
    , 2006, Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming: Geophysical Research Letters, v. 33, n. 19, L19820, doi:http://dx.doi.org/10.1029/2006GL026882
    OpenUrlCrossRef
  63. ↵
    1. Salati E.,
    2. Dall'Olio A.,
    3. Matsui E.,
    4. Gat J. R.
    , 1979, Recycling of water in the Amazon Basin: An isotopic study: Water Resource Research, v. 15, n. 5, p. 1250–1258, doi:http://dx.doi.org/10.1029/WR015i005p01250
    OpenUrlCrossRefWeb of Science
  64. ↵
    1. Schmandt B.,
    2. Humphreys E.
    , 2011, Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States: Geology, v. 39, n. 2, p. 175–178, doi:http://dx.doi.org/10.1130/G31558.1
    OpenUrlAbstract/FREE Full Text
    1. Schmidt G. A.,
    2. Bigg G. R.,
    3. Rohling E. J.
    , 1999, Global Seawater Oxygen-18 Database—v1.21, doi:http://data.giss.nasa.gov/o18data/
    OpenUrlCrossRef
  65. ↵
    1. Sewall J. O.,
    2. Sloan L. C.
    , 2006, Come a little bit closer: A high-resolution climate study of the early Paleogene Laramide foreland: Geology, v. 34, n. 2, p. 81–84, doi:http://dx.doi.org/10.1130/G22177.1
    OpenUrlAbstract/FREE Full Text
    1. Sewall J. O.,
    2. Sloan L. C.,
    3. Huber M.,
    4. Wing S.
    , 2000, Climate sensitivity to changes in land surface characteristics: Global and Planetary Change, v. 26, n. 4, p. 445–465, doi:http://dx.doi.org/10.1016/S0921-8181(00)00056-4
    OpenUrlCrossRefGeoRefWeb of Science
  66. ↵
    1. Sherwood S. C.,
    2. Dessler A. E.
    , 2001, A model for transport across the tropical tropopause: Journal of the Atmospheric Sciences, v. 58, p. 765–779, doi:http://dx.doi.org/10.1175/1520-0469(2001)058〈0765:AMFTAT〉2.0.CO;2
    OpenUrlCrossRefWeb of Science
  67. ↵
    1. Willett S. D.,
    2. Hovius N.,
    3. Brandon M. T.,
    4. Fisher D. M.
    1. Sjostrom D. J.,
    2. Hren M. T.,
    3. Horton T. W.,
    4. Waldbauer J. R.,
    5. Chamberlain C. P.
    , 2006, Stable isotopic evidence for a pre-late Miocene elevation gradient in the Great Plains–Rocky Mountain region, in Willett S. D., Hovius N., Brandon M. T., Fisher D. M. , editors, Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper, v. 398, p. 309–319, doi:http://dx.doi.org/10.1130/2006.2398(19)
    OpenUrlCrossRefWeb of Science
  68. ↵
    1. Smoot J. P.
    , 1983, Depositional sub-environments in an arid closed basin; the Wilkins Peak Member of the Green River Formation (Eocene), Wyoming, U.S.A: Sedimentology, v. 30, n. 6, p. 801–827, doi:http://dx.doi.org/10.1111/j.1365-3091.1983.tb00712.x
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Werner M.,
    2. Langebroek P. M.,
    3. Carlsen T.,
    4. Herold M.,
    5. Lohmann G.
    , 2011, Stable water isotopes in the ECHAM5 general circulation model: Towards high-resolution isotope modeling on a global scale: Journal of Geophysical Research, v. 116, D15109, doi:http://dx.doi.org/10.1029/2011JD015681
    OpenUrlCrossRef
  70. ↵
    1. Wilf P.,
    2. Wing S. L.,
    3. Greenwood D. R.,
    4. Greenwood C. L.
    , 1998, Using fossil leaves as paleoprecipitation indicators: An Eocene example: Geology, v. 26, n. 3, p. 203–206, doi:http://dx.doi.org/10.1130/0091-7613(1998)026〈0203:UFLAPI〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Wing S. L.,
    2. Greenwood D. R.
    , 1993, Fossils and fossil climate: The case for equable continental interiors in the Eocene: Philosophical Transactions of the Royal Society, B, v. 341, n. 1297, p. 243–252, doi:http://dx.doi.org/10.1098/rstb.1993.0109
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. Wolfe J. A.
    , 1994, Tertiary climatic changes at middle latitudes of western North America: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 108, n. 3–4, p. 195–205, doi:http://dx.doi.org/10.1016/0031-0182(94)90233-X
    OpenUrlCrossRefGeoRef
    1. Iwasuki K.,
    2. Raven P. H.
    1. Wolfe J. A.
    , 1997, Relations of environmental changes to angiosperm evolution during the late Cretaceous and Tertiary, in Iwasuki K., Raven P. H. , editors, Evolution and Diversification of Land Plants: Japan, Springer, p. 269–290, doi:http://dx.doi.org/10.1007/978-4-431-65918-1_13
    OpenUrlCrossRef
  73. ↵
    1. Wolfe J. A.,
    2. Schorn H. E.,
    3. Forest C. E.,
    4. Molnar P.
    , 1997, Paleobotanical evidence for high altitudes in Nevada during the Miocene: Science, v. 276, p. 1672–1675, doi:http://dx.doi.org/10.1126/science.276.5319.1672
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Worden J.,
    2. Noone D.,
    3. Bowman K.
    , The Troposheric Emission Spectrometer Science Team and Data Contributors, 2007, Importance of rain evaporation and continental convection in the tropical water cycle: Nature, v. 445, p. 528–532, doi:http://dx.doi.org/10.1038/nature05508
    OpenUrlCrossRefPubMedWeb of Science
    1. Zachos J. C.,
    2. Stott L. D.,
    3. Lohmann K. C.
    , 1994, Evolution of Early Cenozoic marine temperatures: Paleoceanography, v. 9, n. 2, p. 353–387, doi:http://dx.doi.org/10.1029/93PA03266
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    1. Zhou J.,
    2. Poulsen C. J.,
    3. Pollard D.,
    4. White T. S.
    , 2008, Simulation of modern and middle Cretaceous marine δ18O with an ocean-atmosphere general circulation model: Paleoceanography, v. 23, n. 3, doi:http://dx.doi.org/10.1029/2008PA001596
    OpenUrlCrossRef
  76. ↵
    1. Zimmermann U.,
    2. Ehhalt D.,
    3. Münnich K. O.
    , 1967, Soil water movement and evapotranspiration change in the isotopic composition of the water, in IAEA, editors, Isotopes in Hydrology: Vienna, Austria, Proceedings of the Symposium of Isotopes in Hydrology, p. 567–585.
PreviousNext
Back to top

In this issue

American Journal of Science: 313 (7)
American Journal of Science
Vol. 313, Issue 7
1 Sep 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 17 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera
Ran Feng, Christopher J. Poulsen, Martin Werner, C. Page Chamberlain, Hari T. Mix, Andreas Mulch
American Journal of Science Sep 2013, 313 (7) 613-648; DOI: 10.2475/07.2013.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera
Ran Feng, Christopher J. Poulsen, Martin Werner, C. Page Chamberlain, Hari T. Mix, Andreas Mulch
American Journal of Science Sep 2013, 313 (7) 613-648; DOI: 10.2475/07.2013.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Appendices
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling
  • Depositional environment, sediment provenance and oxygen isotope paleoaltimetry of the early Paleogene greater Green River Basin, southwestern Wyoming, U.S.A.
  • Tropical circulation intensification and tectonic extension recorded by Neogene terrestrial {delta}18O records of the western United States
  • Cenozoic paleogeographic evolution of the Elko Basin and surrounding region, northeast Nevada
  • A hot and high Eocene Sierra Nevada
  • Rapid change in high-elevation precipitation patterns of western North America during the Middle Eocene Climatic Optimum (MECO)
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Eocene
  • Paleoaltimetry
  • North American Cordillera
  • paleoclimate
  • paleoclimate modeling
  • oxygen isotopes
  • precipitation

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire