Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticles

Modeling novel stable isotope ratios in the weathering zone

Julien Bouchez, Friedhelm von Blanckenburg and Jan A. Schuessler
American Journal of Science April 2013, 313 (4) 267-308; DOI: https://doi.org/10.2475/04.2013.01
Julien Bouchez
GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bouchez@gfz-potsdam.de
Friedhelm von Blanckenburg
GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bouchez@gfz-potsdam.de
Jan A. Schuessler
GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bouchez@gfz-potsdam.de
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. Amini et al., 2009.↵
    1. Amini M.,
    2. Eisenhauer A.,
    3. Böhm F.,
    4. Holmden C.,
    5. Kreissig K.,
    6. Hauff F.,
    7. Jochum K. P.
    , 2009, Calcium isotopes (δ44/40Ca) in MPI-DING reference glasses, USGS rock powders and various rocks: Evidence for Ca isotope fractionation in terrestrial silicates: Geostandards and Geoanalytical Research, v. 33, n. 2, p. 231–247, doi:http://dx.doi.org/10.1111/j.1751-908X.2009.00903.x
    OpenUrlCrossRefWeb of Science
  2. Anbar et al., 2005.↵
    1. Anbar A. D.,
    2. Jarzecki A. A.,
    3. Spiro T. G.
    , 2005, Theoretical investigation of iron isotope fractionation between Fe(H2O)3+ and Fe(H2O)2+: Implications for iron stable isotope geochemistry: Geochimica et Cosmochimica Acta, v. 69, n. 4, p. 825–837, doi:http://dx.doi.org/10.1016/j.gca.2004.06.012
    OpenUrlCrossRefGeoRefWeb of Science
  3. Anderson et al., 2007.↵
    1. Anderson S. P.,
    2. von Blanckenburg F.,
    3. White A. F.
    , 2007, Physical and chemical controls on the Critical Zone: Elements, v. 3, n. 5, p. 315–319, doi:http://dx.doi.org/10.2113/gselements.3.5.315
    OpenUrlAbstract/FREE Full Text
  4. Bergquist and Boyle, 2006.↵
    1. Bergquist B. A.,
    2. Boyle E. A.
    , 2006, Iron isotopes in the Amazon River system: Weathering and transport signatures: Earth and Planetary Science Letters, v. 248, n. 1–2, p. 54–68, doi:http://dx.doi.org/10.1016/j.epsl.2006.05.004
    OpenUrlCrossRefGeoRefWeb of Science
  5. Bern et al., 2010.↵
    1. Bern C. R.,
    2. Brzezinski M. A.,
    3. Beucher C.,
    4. Ziegler K.,
    5. Chadwick O. A.
    , 2010, Weathering, dust, and biocycling effects on soil silicon isotope ratios: Geochimica et Cosmochimica Acta, v. 74, p. 876–889, doi:http://dx.doi.org/10.1016/j.gca.2009.10.046
    OpenUrlCrossRefGeoRefWeb of Science
  6. Black et al., 2008.↵
    1. Black J. R.,
    2. Epstein E.,
    3. Rains W. D.,
    4. Yin Q.-Z.,
    5. Casey W. H.
    , 2008, Magnesium-isotope fractionation during plant growth: Environmental Science & Technology, v. 42, n. 21, p. 7831–7836, doi:http://dx.doi.org/10.1021/es8012722
    OpenUrlCrossRefPubMedWeb of Science
  7. Bolou-Bi et al., 2010.↵
    1. Bolou-Bi E.,
    2. Poszwa A.,
    3. Leyval C.,
    4. Vigier N.
    , 2010, Experimental determination of magnesium isotope fractionation during higher plant growth: Geochimica et Cosmochimica Acta, v. 74, n. 9, p. 2523–2537, doi:http://dx.doi.org/10.1016/j.gca.2010.02.010
    OpenUrlCrossRefGeoRefWeb of Science
  8. Bolou-Bi et al., 2012.↵
    1. Bolou-Bi E. B.,
    2. Vigier N.,
    3. Poszwa A.,
    4. Boudot J.-P.,
    5. Dambrine E.
    , 2012, Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France): Geochimica et Cosmchimica Acta, v. 87, p. 341–355, doi:http://dx.doi.org/10.1016/j.gca.2012.04.005
    OpenUrlCrossRefWeb of Science
  9. Bouchez et al., 2011.↵
    1. Bouchez J.,
    2. Gaillardet J.,
    3. France-Lanord C.,
    4. Maurice L.,
    5. Dutra-Maia P.
    , 2011, Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles: Geochemistry, Geophysics, Geosystems, v. 12, n. 3, GC00380, doi:http://dx.doi.org/10.1029/2010GC003380
    OpenUrlCrossRef
  10. Brantley and Lebedeva, 2011.↵
    1. Brantley S. L.,
    2. Lebedeva M.
    , 2011, Learning to read the chemistry of regolith to understand the Critical Zone: Annual Review of Earth and Planetary Sciences, v. 39, p. 387–416, doi:http://dx.doi.org/10.1146/annurev-earth-040809-152321
    OpenUrlCrossRefGeoRefWeb of Science
  11. Brantley et al., 2004.↵
    1. Brantley S. L.,
    2. Liermann L. J.,
    3. Guynn R. L.,
    4. Anbar A. D.,
    5. Icopini G. A.,
    6. Barling J.
    , 2004, Fe isotopic fractionation during mineral dissolution with and without bacteria: Geochimica et Cosmochimica Acta, v. 68, n. 15, p. 3189–3204, doi:http://dx.doi.org/10.1016/j.gca.2004.01.023
    OpenUrlCrossRefGeoRefWeb of Science
  12. Brantley et al., 2008.↵
    1. Brantley S. L.,
    2. Kubicki J. D.,
    3. White A. F.
    , 2008, Kinetics of water-rock interaction: New York, Springer, 833 p.
  13. Brantley et al., 2011.
    1. Brantley S. L.,
    2. Megonigal J. P.,
    3. Scatena F. N.,
    4. Balogh Brunstad Z.,
    5. Barnes R. T.,
    6. Bruns M. A.,
    7. van Capellen P.,
    8. Dontsova K.,
    9. Hartnett H. E.,
    10. Hartshorn A. S.,
    11. Heimsath A.,
    12. Herndon E.,
    13. Jin L.,
    14. Keller C. K.,
    15. Leake J. R.,
    16. McDowell W. H.,
    17. Meinzer F. C.,
    18. Mozder T. J.,
    19. Petsch S.,
    20. Pett-Ridge J.,
    21. Pregitzer K. S.,
    22. Ramond P. A.,
    23. Riebe C. S.,
    24. Shumaker K.,
    25. Sutton-Grier A.,
    26. Walter R.,
    27. Yoo K.
    , 2011, Twelve testable hypotheses on the geobiology of weathering: Geobiology, v. 9, n. 2, p. 140–165, doi:http://dx.doi.org/10.1111/j.1472-4669.2010.00264.x
    OpenUrlCrossRefPubMedWeb of Science
  14. Brenot et al., 2008.↵
    1. Brenot A.,
    2. Cloquet C.,
    3. Vigier N.,
    4. Carignan J.,
    5. France-Lanord C.
    , 2008, Magnesium isotope systematics of the lithologically varied Moselle river basin, France: Geochimica et Cosmochimica Acta, v. 72, n. 20, p. 5070–5089, doi:http://dx.doi.org/10.1016/j.gca.2008.07.027
    OpenUrlCrossRefGeoRefWeb of Science
  15. Bullen et al., 2001.↵
    1. Bullen T. D.,
    2. White A. F.,
    3. Childs C. W.,
    4. Vivit D. V.,
    5. Schulz M. S.
    , 2001, Demonstration of significant abiotic iron isotope fractionation in nature: Geology, v. 29, n. 8, p. 699–702, doi:http://dx.doi.org/10.1130/0091-7613(2001)029〈0699:DOSAII〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  16. Calmels et al., 2011.↵
    1. Calmels D.,
    2. Galy A.,
    3. Hovius N.,
    4. Bickle M.,
    5. West A. J.,
    6. Chen M.-C.,
    7. Chapman H.
    , 2011, Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan: Earth and Planetary Science Letters, v. 303, n. 1–2, p. 48–58, doi:http://dx.doi.org/10.1016/j.epsl.2010.12.032
    OpenUrlCrossRefGeoRefWeb of Science
  17. Cardinal et al., 2010.↵
    1. Cardinal D.,
    2. Gaillardet J.,
    3. Hughes H. J.,
    4. Opfergelt S.,
    5. André L.
    , 2010, Contrasting silicon isotope signatures in rivers from the Congo Basin and the specific behaviour of organic-rich waters: Geophysical Research Letters, v. 37, n. 12, L12403, doi:http://dx.doi.org/10.1029/2010GL043413
    OpenUrlCrossRef
  18. Cenki-Tok et al., 2009.↵
    1. Cenki-Tok B.,
    2. Chabaux F.,
    3. Lemarchand D.,
    4. Schmitt A.-D.,
    5. Pierret M.-C.,
    6. Viville D.,
    7. Bagard M.-L.,
    8. Stille P.
    , 2009, The impact of water-rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case): Geochimica et Cosmochimica Acta, v. 73, n. 8, p. 2215–228, doi:http://dx.doi.org/10.1016/j.gca.2009.01.023
    OpenUrlCrossRefGeoRefWeb of Science
  19. Chadwick et al., 1990.↵
    1. Chadwick O. A.,
    2. Brimhall G. H.,
    3. Hendricks D. M.
    , 1990, From a black to a gray box—a mass balance interpretation of pedogenesis: Geomorphology, v. 3, n. 3–4, p. 369–390, doi:http://dx.doi.org/10.1016/0169-555X(90)90012-F
    OpenUrlCrossRefGeoRef
  20. Chan et al., 1992.↵
    1. Chan L. H.,
    2. Edmond J. M.,
    3. Thompson G.,
    4. Gillis K.
    , 1992, Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans: Earth and Planetary Science Letters, v. 108, n. 1–3, p. 151–160, doi:http://dx.doi.org/10.1016/0012-821X(92)90067-6
    OpenUrlCrossRefGeoRefWeb of Science
  21. Charlier et al., 2012.↵
    1. Charlier B. L. A.,
    2. Nowell G. M.,
    3. Parkinson I. J.,
    4. Kelley S. P.,
    5. Pearson D. G.,
    6. Burton K. W.
    , 2012, High temperature strontium stable isotope behaviour in the early solar system and planetary bodies: Earth and Planetary Science Letters, v. 329–330, p. 31–40, doi:http://dx.doi.org/10.1016/j.epsl.2012.02.008
    OpenUrlCrossRef
  22. Chetelat et al., 2009.↵
    1. Chetelat B.,
    2. Liu C.-Q.,
    3. Gaillardet J.,
    4. Wang Q. L.,
    5. Zhao Z. Q.,
    6. Liang C. S.,
    7. Xiao Y. K.
    , 2009, Boron isotopes geochemistry of the Changjiang basin rivers: Geochimica et Cosmochimica Acta, v. 73, n. 29, p. 6084–6097, doi:http://dx.doi.org/10.1016/j.gca.2009.07.026
    OpenUrlCrossRefGeoRefWeb of Science
  23. Cividini et al., 2010.↵
    1. Cividini D.,
    2. Lemarchand D.,
    3. Chabaux F.,
    4. Boutin R.,
    5. Pierret M.-C.
    , 2010, From biological to lithological control of the B geochemical cycle in a forest watershed (Strengbach, Vosges): Geochimica et Cosmochimica Acta, v. 74, n. 11, p. 3143–3163, doi:http://dx.doi.org/10.1016/j.gca.2010.03.002
    OpenUrlCrossRefGeoRefWeb of Science
  24. Cobert et al., 2011.↵
    1. Cobert F.,
    2. Schmitt A.-D.,
    3. Bourgeade P.,
    4. Labolle F.,
    5. Badot P.-M.,
    6. Chabaux F.,
    7. Stille P.
    , 2011, Experimental identification of Ca isotopic fractionations in higher plants: Geochimica et Cosmochimica Acta, v. 75, n. 19, p. 5467–5482, doi:http://dx.doi.org/10.1016/j.gca.2011.06.032
    OpenUrlCrossRefGeoRefWeb of Science
  25. Cornelis et al., 2010a.↵
    1. Cornelis J.-T.,
    2. Delvaux B.,
    3. Cardinal D.,
    4. André L.,
    5. Ranger J.,
    6. Opfergelt S.
    , 2010a, Tracing mechanisms controlling the release of dissolved silicon in forest soil solutions using Si isotopes and Ge/Si ratios: Geochimica et Cosmochimica Acta, v. 74, n. 14, p. 3913–3924, doi:http://dx.doi.org/10.1016/j.gca.2010.04.056
    OpenUrlCrossRefGeoRefWeb of Science
  26. Cornelis et al., 2011.↵
    1. Cornelis J.-T.,
    2. Delvaux B.,
    3. Georg R. B.,
    4. Lucas Y.,
    5. Ranger J.,
    6. Opfergelt S.
    , 2011, Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review: Biogeosciences Disscussions, v. 8, p. 89–112, doi:http://dx.doi.org/10.5194/bg-8-89-2011
    OpenUrlCrossRef
  27. De La Rocha and Bickle, 2005.↵
    1. De La Rocha C. L.,
    2. Bickle M. J.
    , 2005, Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle: Marine Geology, v. 217, n. 3–4, p. 267–282, doi:http://dx.doi.org/10.1016/j.margeo.2004.11.016
    OpenUrlCrossRefGeoRefWeb of Science
  28. De La Rocha and DePaolo, 2000.↵
    1. De La Rocha C. L.,
    2. DePaolo D. J.
    , 2000, Isotope evidence for variations in the marine calcium cycle over the Cenozoic: Science, v. 289, n. 5482, p. 1176–1178, doi:http://dx.doi.org/10.1126/science.289.5482.1176
    OpenUrlAbstract/FREE Full Text
  29. De La Rocha et al., 1998.↵
    1. De La Rocha C. L.,
    2. Brzezinski M. A.,
    3. DeNiro M. J.,
    4. Shemesh A.
    , 1998, Silicon-isotope composition of diatoms as an indicator of past oceanic change: Nature, v. 395, p. 680–682, doi:http://dx.doi.org/10.1038/27174
    OpenUrlCrossRefWeb of Science
  30. De La Rocha et al., 2000.
    1. De La Rocha C. L.,
    2. Brzezinski M. A.,
    3. DeNiro M. J.
    , 2000, A first look at the distribution of the stable isotopes of silicon in natural waters: Geochimica et Cosmochimica Acta, v. 65, n. 14, p. 2467–2477, doi:http://dx.doi.org/10.1016/S0016-7037(00)00373-2
    OpenUrlCrossRef
  31. de Souza et al., 2010.↵
    1. de Souza G. F.,
    2. Reynolds B. C.,
    3. Kiczka M.,
    4. Bourdon B.
    , 2010, Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed: Geochimica et Cosmochimica Acta, v. 74, n. 9. p. 2596–2614, doi:http://dx.doi.org/10.1016/j.gca.2010.02.012
    OpenUrlCrossRefGeoRefWeb of Science
  32. de Villiers et al., 2005.↵
    1. de Villiers S.,
    2. Dickson J. A. D.,
    3. Ellam R. M.
    , 2005, The composition of the continental river weathering flux deduced from seawater Mg isotopes: Chemical Geology, v. 216, n. 1–2, p. 133–142, doi:http://dx.doi.org/10.1016/j.chemgeo.2004.11.010
    OpenUrlCrossRefGeoRefWeb of Science
  33. Delstanche et al., 2009.↵
    1. Delstanche S.,
    2. Opfergelt S.,
    3. Cardinal D.,
    4. Elsass F.,
    5. André L.,
    6. Delvaux B.
    , 2009, Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide: Geochimica et Cosmochimica Acta, v. 73, n. 4, p. 923–934, doi:http://dx.doi.org/10.1016/j.gca.2008.11.014
    OpenUrlCrossRefGeoRefWeb of Science
  34. DePaolo, 2011.↵
    1. DePaolo D. J.
    , 2011, Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions: Geochimica et Cosmochimica Acta, v. 75, n. 4, p. 1039–1056, doi:http://dx.doi.org/10.1016/j.gca.2010.11.020
    OpenUrlCrossRefGeoRefWeb of Science
  35. Ding et al., 2004.↵
    1. Ding T.,
    2. Wan D.,
    3. Wang C.,
    4. Zhang F.
    , 2004, Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China: Geochimica et Cosmochimica Acta, v. 68, n. 2, p. 205–216, doi:http://dx.doi.org/10.1016/S0016-7037(03)00264-3
    OpenUrlCrossRefGeoRefWeb of Science
  36. Ding et al., 2009.↵
    1. Ding T. P.,
    2. Zhou J. X.,
    3. Wan D. F.,
    4. Chen Z. Y.,
    5. Wang C. Y.,
    6. Zhang F.
    , 2009, Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon: Geochimica et Cosmochimica Acta, v. 72, n. 5, p. 1381–1395, doi:http://dx.doi.org/10.1016/j.gca.2008.01.008
    OpenUrlCrossRefWeb of Science
  37. Ding et al., 2011.↵
    1. Ding T. P.,
    2. Gao J. F.,
    3. Tian S. H.,
    4. Wang H. B.,
    5. Li M.
    , 2011, Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle: Geochimica et Cosmochimica Acta, v. 75, n. 21, p. 6672–6689, doi:http://dx.doi.org/10.1016/j.gca.2011.07.040
    OpenUrlCrossRefGeoRefWeb of Science
  38. Dixon and von Blanckenburg, 2012.↵
    1. Dixon J. L.,
    2. von Blanckenburg F.
    , 2012, Soils as pacemakers and limiters of global silicate weathering: Comptes-Rendus Géoscience, v. 344, n. 11–12, p. 597–609, doi:http://dx.doi.org/10.1016/j.crte.2012.10.012
    OpenUrlCrossRef
  39. Dixon et al., 2009.↵
    1. Dixon J. L.,
    2. Heimsath A. M.,
    3. Kaste J.,
    4. Amundson R.
    , 2009, Climate-driven processes of hillslope weathering: Geology, v. 37, n. 11, p. 975–978, doi:http://dx.doi.org/10.1130/G30045A.1
    OpenUrlAbstract/FREE Full Text
  40. dos Santos Pinheiro et al., 2013.↵
    1. dos Santos Pinheiro G. M.,
    2. Poitrason F.,
    3. Sondag F.,
    4. Cruz Vieira L.,
    5. Pimentel M. M.
    , 2013, Iron isotope composition of the suspended matter along depth and lateral profiles in the Amazon River and its tributaries: Journal of South American Earth Sciences, v. 44, p. 35–44, doi:http://dx.doi.org/10.1016/j.jsames.2012.08.001
    OpenUrlCrossRef
  41. Dupré et al., 2003.↵
    1. Dupré B.,
    2. Dessert C.,
    3. Oliva P.,
    4. Goddéris Y.,
    5. Viers J.,
    6. François L.,
    7. Millot R.,
    8. Gaillardet J.
    , 2003, Rivers, chemical weathering and Earth's climate: Comptes Rendus Géoscience, v. 335, n. 16, p. 1141–1160, doi:http://dx.doi.org/10.1016/j.crte.2003.09.015
    OpenUrlCrossRef
  42. Emmanuel et al., 2005.↵
    1. Emmanuel S.,
    2. Erel Y.,
    3. Matthews A.,
    4. Teutsch N.
    , 2005, A preliminary mixing model for Fe isotopes in soils: Chemical Geology, v. 222, n. 1–2, p. 23–34, doi:http://dx.doi.org/10.1016/j.chemgeo.2005.07.002
    OpenUrlCrossRefGeoRefWeb of Science
  43. Engström et al., 2010.↵
    1. Engström E.,
    2. Rodushkin I.,
    3. Ingri J.,
    4. Baxter D. C.,
    5. Ecke F.,
    6. Österlund H.,
    7. Öhlander B.
    , 2010, Temporal variations of dissolved silicon in a pristine boreal river: Chemical Geology, v. 271, n. 3–4, p. 142–152, doi:http://dx.doi.org/10.1016/j.chemgeo.2010.01.005
    OpenUrlCrossRefGeoRefWeb of Science
  44. Ewing et al., 2008.↵
    1. Ewing S. A.,
    2. Yang W.,
    3. DePaolo D. J.,
    4. Michalski G.,
    5. Kendall C.,
    6. Stewart B. W.,
    7. Thiemens M.,
    8. Amundson R.
    , 2008, Non-biological fractionation of stable Ca isotopes in soils of the Atacama desert, Chile: Geochimica et Cosmochimica Acta, v. 72, n. 4, p. 1096–1110, doi:http://dx.doi.org/10.1016/j.gca.2007.10.029
    OpenUrlCrossRefGeoRefWeb of Science
  45. Fantle, 2010.↵
    1. Fantle M. S.
    , 2010, Evaluating the Ca isotope proxy: American Journal of Science, v. 310, n. 3, p. 194–230, doi:http://dx.doi.org/10.2475/03.2010.03
    OpenUrlAbstract/FREE Full Text
  46. Fantle and DePaolo, 2004.↵
    1. Fantle M. S.,
    2. DePaolo D. J.
    , 2004, Iron isotopic fractionation during continental weathering: Earth and Planetary Science Letters, v. 228, n. 3–4, p. 547–562, doi:http://dx.doi.org/10.1016/j.epsl.2004.10.013
    OpenUrlCrossRefGeoRefWeb of Science
  47. Fantle and DePaolo, 2005.↵
    1. Fantle M. S.,
    2. DePaolo D. J.
    , 2005, Variations in the marine Ca cycle over the past 20 million years: Earth and Planetary Science Letters, v. 237, n. 1–2, p. 102–117, doi:http://dx.doi.org/10.1016/j.epsl.2005.06.024
    OpenUrlCrossRefGeoRefWeb of Science
  48. Ferrier and Kirchner, 2008.↵
    1. Ferrier K. L.,
    2. Kirchner J. W.
    , 2008, Effects of physical erosion on chemical denudation rates: A numerical modeling study of soil-mantled hillslopes: Earth and Planetary Science Letters, v. 272, n. 3–4, p. 591–599, doi:http://dx.doi.org/10.1016/j.epsl.2008.05.024
    OpenUrlCrossRefGeoRefWeb of Science
  49. Ferrier et al., 2010.↵
    1. Ferrier K. L.,
    2. Kirchner J. W.,
    3. Riebe C. S.,
    4. Finkel R. C.
    , 2010, Mineral-specific chemical weathering rates over millenial timescales: Measurements at Rio Icacos, Puerto Rico: Chemical Geology, v. 277, n. 1–2, p. 101–114, doi:http://dx.doi.org/10.1016/j.chemgeo.2010.07.013
    OpenUrlCrossRefGeoRefWeb of Science
  50. Fletcher et al., 2006.↵
    1. Fletcher R. C.,
    2. Buss H. L.,
    3. Brantley S. L.
    , 2006, A spheroidal weathering model coupling porewater chemistry to soil thickness during steady-state denudation: Earth and Planetary Science Letters, v. 244, n. 1–2, p. 444–457, doi:http://dx.doi.org/10.1016/j.epsl.2006.01.055
    OpenUrlCrossRefGeoRefWeb of Science
  51. Gabet and Mudd, 2009.↵
    1. Gabet E. J.,
    2. Mudd S. M.
    , 2009, A theoretical model coupling chemical weathering rates with denudation rates: Geology, v. 37, n. 2, p. 151–154, doi:http://dx.doi.org/10.1130/G25270A.1
    OpenUrlAbstract/FREE Full Text
  52. Gaillardet et al., 1999.↵
    1. Gaillardet J.,
    2. Dupré B.,
    3. Louvat P.,
    4. Allègre C. J.
    , 1999, Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers: Chemical Geology, v. 159, n. 1–4, p. 3–30, doi:http://dx.doi.org/10.1016/S0009-2541(99)00031-5
    OpenUrlCrossRefGeoRefWeb of Science
  53. Gaillardet et al., 2003.↵
    1. Drever J. I.
    1. Gaillardet J.,
    2. Viers J.,
    3. Dupré B.
    , 2003, Trace elements in river waters, in Drever J. I. , editor, Surface and Ground Water: Treatise on Geochemistry, v. 5, ch. 9, p. 225–272, doi:http://dx.doi.org/10.1016/B0-08-043751-6/05165-3
    OpenUrlCrossRef
  54. Galy et al., 2003.↵
    1. Galy A.,
    2. Yoffe O.,
    3. Janney P. E.,
    4. Williams R. W.,
    5. Cloqiet C.,
    6. Alard O.,
    7. Halicz L.,
    8. Wadhwa M.,
    9. Hutcheon I. D.,
    10. Ramon E.,
    11. Carignan J.
    , 2003, Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements: Journal of Analytical Atomic Spectrometry, v. 18, n. 11, p. 1352–1356, doi:http://dx.doi.org/10.1039/b309273a
    OpenUrlCrossRefWeb of Science
  55. Georg et al., 2006.↵
    1. Georg R. B.,
    2. Reynolds B. C.,
    3. Frank M.,
    4. Halliday A. N.
    , 2006, Mechanisms controlling the silicon isotopic compositions of river waters: Earth and Planetary Science Letters, v. 249, n. 3–4, p. 290–306, doi:http://dx.doi.org/10.1016/j.epsl.2006.07.006
    OpenUrlCrossRefGeoRefWeb of Science
  56. Georg et al., 2007.↵
    1. Georg R. B.,
    2. Reynolds B. C.,
    3. West A. J.,
    4. Burton K. W.,
    5. Halliday A. N.
    , 2007, Silicon isotope variations accompanying basalt weathering in Iceland: Earth and Planetary Science Letters, v. 261, n. 3–4, p. 476–490, doi:http://dx.doi.org/10.1016/j.epsl.2007.07.004
    OpenUrlCrossRefGeoRefWeb of Science
  57. Georg et al., 2009a.↵
    1. Georg R. B.,
    2. West A. J.,
    3. Basu A. R.,
    4. Halliday A. N.
    , 2009a, Silicon fluxes and isotope composition of direct groundwater discharge into the Bay of Bengal and the effect on the global ocean silicon isotope budget: Earth and Planetary Science Letters, v. 283, n. 1–4, p. 67–74, doi:http://dx.doi.org/10.1016/j.epsl.2009.03.041
    OpenUrlCrossRefGeoRefWeb of Science
  58. Georg et al., 2009b.↵
    1. Georg R. B.,
    2. Zhu C.,
    3. Reynolds B. C.,
    4. Halliday A. N.
    , 2009b, Stable silicon isotopes of groundwater, feldspars, and clay coatings in the Navajo sandstone aquifer, Black Mesa, Arizona, USA: Geochimica et Cosmochimica Acta, v. 73, n. 8, p. 2229–2241, doi:http://dx.doi.org/10.1016/j.gca.2009.02.005
    OpenUrlCrossRefGeoRefWeb of Science
  59. Goudie and Viles, 2012.↵
    1. Goudie A. S.,
    2. Viles H. A.
    , 2012, Weathering and the global carbon cycle: Geomorphological perspectives: Earth Science Reviews, v. 113, n. 1–2, p. 59–71, doi:http://dx.doi.org/10.1016/j.earscirev.2012.03.005
    OpenUrlCrossRefWeb of Science
  60. Guelke and von Blanckenburg, 2007.↵
    1. Guelke M.,
    2. von Blanckenburg F.
    , 2007, Fractionation of stable iron isotopes in higher plants: Environmental Science & Technology, v. 41, n. 6, p. 1896–1901, doi:http://dx.doi.org/10.1021/es062288j
    OpenUrlCrossRefPubMedWeb of Science
  61. Guelke et al., 2010.↵
    1. Guelke M.,
    2. von Blanckenburg F.,
    3. Schoenberg R.,
    4. Staubwasser M.,
    5. Stuetzel H.
    , 2010, Determining the stable Fe isotope signature of plant-available iron in soils: Chemical Geology, v. 277, n. 3–4, p. 269–280, doi:http://dx.doi.org/10.1016/j.chemgeo.2010.08.010
    OpenUrlCrossRefGeoRefWeb of Science
  62. Halliday et al., 1998.↵
    1. Halliday A. N.,
    2. Lee D.-C.,
    3. Christensen J. N.,
    4. Rehkämper M.,
    5. Yi W.,
    6. Luo X.,
    7. Hall C. M.,
    8. Ballentine C. J.,
    9. Pettke T.,
    10. Stirling C.
    , 1998, Applications of multiple collector-ICPMS to cosmochemistry, geochemistry and paleoceanography: Geochimica et Cosmochimica Acta, v. 62, n. 6, p. 919–940, doi:http://dx.doi.org/10.1016/S0016-7037(98)00057-X
    OpenUrlCrossRefGeoRefWeb of Science
  63. Handler et al., 2009.↵
    1. Handler M. R.,
    2. Baker J. A.,
    3. Schiller M.,
    4. Bennett V. C.,
    5. Yaxley G. M
    , 2009, Magnesium stable isotope composition of Earth's upper mantle: Earth and Planetary Science Letters, v. 282, p. 306–313, doi:http://dx.doi.org/10.1016/j.epsl.2009.03.031
    OpenUrlCrossRefGeoRefWeb of Science
  64. Hathorne and James, 2006.↵
    1. Hathorne E. C.,
    2. James R. H.
    , 2006, Temporal record of lithium in seawater: a tracer for silicate weathering: Earth and Planetary Science Letters, v. 246, n. 3–4, p. 393–406, doi:http://dx.doi.org/10.1016/j.epsl.2006.04.020
    OpenUrlCrossRefGeoRefWeb of Science
  65. Heimsath et al., 1997.↵
    1. Heimsath A. M.,
    2. Dietrich W. E.,
    3. Nishiizumi K.,
    4. Finkel R. C.
    , 1997, The soil production function and landscape equilibrium: Nature, v. 388, p. 358–361, doi:http://dx.doi.org/10.1038/41056
    OpenUrlCrossRefGeoRefWeb of Science
  66. Hindshaw et al., 2011.↵
    1. Hindshaw R. S.,
    2. Reynolds B. C.,
    3. Wiederhold J. G.,
    4. Kretzschmar R.,
    5. Bourdon B.
    , 2011, Calcium isotopes in a proglacial weathering environment: Damma glacier, Switzerland: Geochimica et Cosmochimica Acta, v. 75, n. 1, p. 106–118, doi:http://dx.doi.org/10.1016/j.gca.2010.09.038
    OpenUrlCrossRefGeoRefWeb of Science
  67. Holmden and Bélanger, 2010.↵
    1. Holmden C.,
    2. Bélanger N.
    , 2010, Ca isotopes cycling in a forested ecosystem: Geochimica et Cosmochimica Acta, v. 74, n. 3, p. 995–1015, doi:http://dx.doi.org/10.1016/j.gca.2009.10.020
    OpenUrlCrossRefGeoRefWeb of Science
  68. Huang et al., 2012.↵
    1. Huang K.-J.,
    2. Teng F.-Z.,
    3. Wei G.-J.,
    4. Ma J.-L.,
    5. Bao Z.-Y.
    , 2012, Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China: Earth and Planetary Science Letters, v. 359–360, p. 73–83, doi:http://dx.doi.org/10.1016/j.epsl.2012.10.007
    OpenUrlCrossRef
  69. Hughes et al., 2011.↵
    1. Hughes H. J.,
    2. Sondag F.,
    3. Cocquyt C.,
    4. Laraque A.,
    5. Pandi A.,
    6. André L.,
    7. Cardinal D.
    , 2011, Effect of seasonal biogenic silica variations on dissolved silicon fluxes and isotopic signatures in the Congo River: Limnology and Oceanography, v. 56, n. 2, p. 551–561, doi:http://dx.doi.org/10.4319/lo.2011.56.2.0551
    OpenUrlCrossRefWeb of Science
  70. Huh et al., 1998.↵
    1. Huh Y.,
    2. Chan L.-H.,
    3. Zhang L.,
    4. Edmond J. M.
    , 1998, Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget: Geochimica et Cosmochimica Acta, v. 62, n. 12, p. 2039–2051, doi:http://dx.doi.org/10.1016/S0016-7037(98)00126-4
    OpenUrlCrossRefGeoRefWeb of Science
  71. Huh et al., 2001.↵
    1. Huh Y.,
    2. Chan L.-H.,
    3. Edmond J. M.
    , 2001, Lithium isotopes as a probe of weathering processes: Orinoco River: Earth and Planetary Science Letters, v. 194, n. 1–2, p. 189–199, doi:http://dx.doi.org/10.1016/S0012-821X(01)00523-4
    OpenUrlCrossRefGeoRefWeb of Science
  72. Huh et al., 2004.↵
    1. Huh Y.,
    2. Chan L.-H.,
    3. Chadwick O. A.
    , 2004, Behavior of lithium and its isotopes during weathering of Hawaiian basalt: Geochemistry Geophysics Geosystems, v. 5, n. 9, GC000729, doi:http://dx.doi.org/10.1029/2004GC000729
    OpenUrlCrossRef
  73. Ilina et al., 2013.↵
    1. Ilina S. M.,
    2. Poitrasson F.,
    3. Lapitskiy S. A.,
    4. Alekhin Y. V.,
    5. Viers J.,
    6. Pokrovsky O. S.
    , 2013, Extreme iron isotope fractionation between colloids and particles of boreal and temperate organic-rich waters: Geochimica et Cosmochimica Acta, v. 101, p. 96–111, doi:http://dx.doi.org/10.1016/j.gca.2012.10.023
    OpenUrlCrossRefGeoRefWeb of Science
  74. Ingri et al., 2006.↵
    1. Ingri J.,
    2. Malinovsky D.,
    3. Rodushkin I.,
    4. Baxter D. C.,
    5. Widelund A.,
    6. Andersson P.,
    7. Gustafsson Ö.,
    8. Forsling W.,
    9. Öhlander B.
    , 2006, Iron isotope fractionation in river colloidal matter: Earth and Planetary Science Letters, v. 245, n. 3–4, p. 792–798, doi:http://dx.doi.org/10.1016/j.epsl.2006.03.031
    OpenUrlCrossRefGeoRefWeb of Science
  75. Jacobson and Holmden, 2008.↵
    1. Jacobson A. D.,
    2. Holmden C.
    , 2008, δ44Ca evolution in a carbonate aquifer and its bearing on the equilibrium isotope fractionation factor for calcite: Earth and Planetary Science Letters, v. 270, n. 3–4, p. 349–353, doi:http://dx.doi.org/10.1016/j.epsl.2008.03.039
    OpenUrlCrossRefGeoRefWeb of Science
  76. Jacobson et al., 2010.↵
    1. Jacobson A. D.,
    2. Zhang Z.,
    3. Lundstrom C.,
    4. Huang F.
    , 2010, Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota: Earth and Planetary Science Letters, v. 297, n. 3–4, p. 446–452, doi:http://dx.doi.org/10.1016/j.epsl.2010.06.038
    OpenUrlCrossRefGeoRefWeb of Science
  77. Johnson et al., 2005.↵
    1. Johnson C. M.,
    2. Roden E. E.,
    3. Welch S. A.,
    4. Beard B. L.
    , 2005, Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction: Geochimica et Cosmochimica Acta, v. 69, n. 4, p. 963–993, doi:http://dx.doi.org/10.1016/j.gca.2004.06.043
    OpenUrlCrossRefGeoRefWeb of Science
  78. Kiczka et al., 2010.↵
    1. Kiczka M.,
    2. Wiederhold J. G.,
    3. Frommer J.,
    4. Kraemer S. M.,
    5. Bourdon B.,
    6. Kretzschmar R.
    , 2010, Iron isotope fractionation during proton- and ligand-promoted dissolution of primary phyllosilicates: Geochimica et Cosmochimica Acta, v. 74, n. 11, p. 3112–3128, doi:http://dx.doi.org/10.1016/j.gca.2010.02.018
    OpenUrlCrossRefGeoRefWeb of Science
  79. Kiczka et al., 2011.↵
    1. Kiczka M.,
    2. Wiederhold J. G.,
    3. Frommer J.,
    4. Voegelin A.,
    5. Kraemer S. M.,
    6. Bourdon B.,
    7. Kretzschmar R.
    , 2011, Iron speciation and isotope fractionation during silicate weathering and soil formation in an alpine glacier forefield chronosequence: Geochimica et Cosmochimica Acta, v. 75, n. 19, p. 5559–5573, doi:http://dx.doi.org/10.1016/j.gca.2011.07.008
    OpenUrlCrossRefGeoRefWeb of Science
  80. Kisakürek et al., 2004.↵
    1. Kisakürek B.,
    2. Widdowson M.,
    3. James R. H.
    , 2004, Behaviour of Li isotopes during continental weathering: the Bidar laterite profile, India: Chemical Geology, v. 212, n. 1–2, p. 27–44, doi:http://dx.doi.org/10.1016/j.chemgeo.2004.08.027
    OpenUrlCrossRefGeoRefWeb of Science
  81. Kisakürek et al., 2005.↵
    1. Kisakürek B.,
    2. James R. H.,
    3. Harris N. B. W.
    , 2005, Li and δ7Li in Himalayan rivers: Proxies for silicate weathering?: Earth and Planetary Science Letters, v. 237, n. 3–4, p. 387–401, doi:http://dx.doi.org/10.1016/j.epsl.2005.07.019
    OpenUrlCrossRefGeoRefWeb of Science
  82. Klochko et al., 2006.↵
    1. Klochko K.,
    2. Kaufman A. J.,
    3. Yao W.,
    4. Byrne R. H.,
    5. Tossell J. A.
    , 2006, Experimental measurement of boron isotope fractionation in seawater: Earth and Planetary Science Letters, v. 248, n. 1–2, p. 276–285, doi:http://dx.doi.org/10.1016/j.epsl.2006.05.034
    OpenUrlCrossRefGeoRefWeb of Science
  83. Lebedeva et al., 2007.↵
    1. Lebedeva M. I.,
    2. Fletcher R. C.,
    3. Balashov V. N.,
    4. Brantley S. L.
    , 2007, A reactive diffusion model describing transformation of bedrock to saprolite: Chemical Geology, v. 244, n. 3–4, p. 624–645, doi:http://dx.doi.org/10.1016/j.chemgeo.2007.07.008
    OpenUrlCrossRefGeoRefWeb of Science
  84. Lemarchand and Gaillardet, 2006.↵
    1. Lemarchand D.,
    2. Gaillardet J.
    , 2006, Transient features of the erosion of shales in the Mackenzie basin (Canada), evidences from boron isotopes: Earth and Planetary Science Letters, v. 245, n. 1–2, p. 174–189, doi:http://dx.doi.org/10.1016/j.epsl.2006.01.056
    OpenUrlCrossRefGeoRefWeb of Science
  85. Lemarchand et al., 2000.↵
    1. Lemarchand D.,
    2. Gaillardet J.,
    3. Lewin É.,
    4. Allègre C. J.
    , 2000, The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH: Nature, v. 408, p. 951–954, doi:http://dx.doi.org/10.1038/35050058
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  86. Lemarchand et al., 2002.↵
    1. Lemarchand D.,
    2. Gaillardet J.,
    3. Lewin É.,
    4. Allègre C. J.
    , 2002, Boron isotope systematics in large rivers: Implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic: Chemical Geology, v. 190, n. 1–4, p. 123–140, doi:http://dx.doi.org/10.1016/S0009-2541(02)00114-6
    OpenUrlCrossRefGeoRefWeb of Science
  87. Lemarchand et al., 2012.↵
    1. Lemarchand D.,
    2. Cividini D.,
    3. Turpault M.-P.,
    4. Chabaux F.
    , 2012, Boron isotopes in different grain size fractions: exploring past and present water-rock interactions from two soil profiles (Strengbach, Vosges Mountains): Geochimica et Cosmochimica Acta, v. 98, p. 78–93, doi:http://dx.doi.org/10.1016/j.gca.2012.09.009
    OpenUrlCrossRefGeoRefWeb of Science
  88. Lemarchand et al., 2005.↵
    1. Lemarchand E.,
    2. Schott J.,
    3. Gaillardet J.
    , 2005, Boron isotopic fractionation related to boron sorption on humic acid and the structure of the surface complexes formed: Geochimica et Cosmochimica Acta, v. 69, n. 14, p. 3519–3533, doi:http://dx.doi.org/10.1016/j.gca.2005.02.024
    OpenUrlCrossRefGeoRef
  89. Lemarchand et al., 2007.↵
    1. Lemarchand E.,
    2. Schott J.,
    3. Gaillardet J.
    , 2007, How surface complexes impact boron isotope fractionation: Evidence from Fe and Mn oxides sorption experiments: Earth and Planetary Science Letters, v. 260, n. 1–2, p. 277–296, doi:http://dx.doi.org/10.1016/j.epsl.2007.05.039
    OpenUrlCrossRefWeb of Science
  90. Lemarchand et al., 2010.↵
    1. Lemarchand E.,
    2. Chabaux F.,
    3. Vigier N.,
    4. Millot R.,
    5. Pierret M.-C.
    , 2010, Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France): Geochimica et Cosmochimica Acta, v. 74, n. 16, p. 4612–4628, doi:http://dx.doi.org/10.1016/j.gca.2010.04.057
    OpenUrlCrossRefGeoRefWeb of Science
  91. Li et al., 2010.↵
    1. Li W.-Y.,
    2. Teng F.-Z.,
    3. Ke S.,
    4. Rudnick R. L.,
    5. Gao S.,
    6. Wu F.-Y.,
    7. Chappell B. W.
    , 2010, Heterogeneous magnesium isotopic composition of the upper continental crust: Geochimica et Cosmochimica Acta, v. 74, n. 23, p. 6867–6884, doi:http://dx.doi.org/10.1016/j.gca.2010.08.030
    OpenUrlCrossRefGeoRefWeb of Science
  92. Louvat et al., 2011.↵
    1. Louvat P.,
    2. Gaillardet J.,
    3. Paris G.,
    4. Dessert C.
    , 2011, Boron isotope ratios of surface waters in Guadeloupe, Lesser Antilles: Applied Geochemistry, v. 26, Supplement, p. S76–S79, doi:http://dx.doi.org/10.1016/j.apgeochem.2011.03.035
    OpenUrlCrossRefGeoRefWeb of Science
  93. Lundstrom et al., 2005.↵
    1. Lundstrom C. C.,
    2. Chaussidon M.,
    3. Hsui A. T.,
    4. Kelemen P.,
    5. Zimmerman M.
    , 2005, Observation of Li isotopic variation in the Trinity ophiolite: evidence for isotopic fractionation by diffusion during mantle melting: Geochimica et Cosmochimica Acta, v. 69, n. 3, p. 735–751, doi:http://dx.doi.org/10.1016/j.gca.2004.08.004
    OpenUrlCrossRefGeoRefWeb of Science
  94. Maher, 2010.↵
    1. Maher R.
    , 2010, The dependence of chemical weathering rates on fluid residence time: Earth and Planetary Science Letters, v. 294, n. 1–2, p. 101–110, doi:http://dx.doi/org/10.1016/j.epsl.2010.03.010
    OpenUrlCrossRefGeoRefWeb of Science
  95. Marriott et al., 2004.↵
    1. Marriott C. S.,
    2. Henderson G. M.,
    3. Belshaw N. S.,
    4. Tudhope A. W.
    , 2004, Temperature dependence of δ7Li,δ44Ca and Li/Ca during growth of calcium carbonate: Earth and Planetary Science Letters, v. 222, n. 2, p. 615–624, doi:http://dx.doi.org/10.1016/j.epsl.2004.02.031
    OpenUrlCrossRefGeoRefWeb of Science
  96. Martin and Meybeck, 1979.↵
    1. Martin J.-M.,
    2. Meybeck M.
    , 1979, Elemental mass-balance of material carried by major world rivers: Marine Chemistry, v. 7, n. 3, p. 173–206, doi:http://dx.doi.org/10.1016/0304-4203(79)90039-2
    OpenUrlCrossRefGeoRefWeb of Science
  97. Millot et al., 2010.↵
    1. Millot R.,
    2. Vigier N.,
    3. Gaillardet J.
    , 2010, Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada: Geochimica et Cosmochimica Acta, v. 74, n. 14, p. 3897–3912, doi:http://dx.doi.org/10.1016/j.gca.2010.04.025
    OpenUrlCrossRefGeoRefWeb of Science
  98. Misra and Froelich, 2012.↵
    1. Misra S.,
    2. Froelich P. N.
    , 2012, Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering: Science, v. 335, n. 6070, p. 818–823, doi:http://dx.doi.org/10.1126/science.1214697
    OpenUrlAbstract/FREE Full Text
  99. Négrel et al., 2010.↵
    1. Négrel P.,
    2. Millot R.,
    3. Brenot A.,
    4. Bertin C.
    , 2010, Lithium isotopes as tracers of groundwater circulation in a peat land: Chemical Geology, v. 276, n. 1–2, p. 119–127, doi:http://dx.doi.org/10.1016/j.chemgeo.2010.06.008
    OpenUrlCrossRefGeoRefWeb of Science
  100. Négrel et al., 2012.↵
    1. Négrel P.,
    2. Millot R.,
    3. Guerrot C.,
    4. Petelet-Giraud E.,
    5. Brenot A.,
    6. Malcuit E.
    , 2012, Heterogeneities and interconnections in groundwaters: Coupled B, Li and stable-isotope variations in a large aquifer system (Eocene Sand aquifer, Southwestern France): Chemical Geology, v. 296–297, p. 83–95, doi:http://dx.doi.org/10.1016/j.chemgeo.2011.12.022
    OpenUrlCrossRef
  101. Ockert et al., 2013.↵
    1. Ockert C.,
    2. Gussone N.,
    3. Kaufhold S.,
    4. Teichert B. M. A.
    , 2013, Isotope fractionation of Ca during exchange on clay minerals in a marine environment: Geochimica et Cosmochimica Acta, doi:http://dx.doi.org/10.1016/j.gca.2012.09.041
    OpenUrlCrossRef
  102. Opfergelt et al., 2009.↵
    1. Opfergelt S.,
    2. de Bournonville G.,
    3. Cardinal D.,
    4. André L.,
    5. Delstanche S.,
    6. Delvaux B.
    , 2009, Impact of soil weathering degree on silicon isotopic fractionation during adsorption onto iron oxides in basaltic ash soils, Cameroon: Geochimica et Cosmochimica Acta, v. 73, n. 24, p. 7226–7240, doi:http://dx.doi.org/10.1016/j.gca.2009.09.003
    OpenUrlCrossRefGeoRefWeb of Science
  103. Opfergelt et al., 2010.↵
    1. Opfergelt S.,
    2. Cardinal D.,
    3. André L.,
    4. Delvigne C.,
    5. Bremond L.,
    6. Delvaux B.
    , 2010, Variations of δ30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture: Geochimica et Cosmochimica Acta, v. 74, n. 1, p. 225–240, doi:http://dx.doi.org/10.1016/j.gca.2009.09.025
    OpenUrlCrossRefGeoRefWeb of Science
  104. Opfergelt et al., 2011.↵
    1. Opfergelt S.,
    2. Georg R. B.,
    3. Burton K. W.,
    4. Guicharnaud R.,
    5. Siebert C.,
    6. Gíslason S. R.,
    7. Halliday A. N.
    , 2011, Silicon isotopes in allophane as a proxy for mineral formation in volcanic soils: Applied Geochemistry, v. 26, Supplement, p. S115–S118, doi:http://dx.doi.org/10.1016/j.apgeochem.2011.03.044
    OpenUrlCrossRefGeoRefWeb of Science
  105. Opfergelt et al., 2012a.↵
    1. Opfergelt S.,
    2. Georg R. B.,
    3. Delvaux B.,
    4. Cabidoche Y.-M.,
    5. Burton K. W.,
    6. Halliday A. N.
    , 2012a, Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences, Guadeloupe: Earth and Planetary Science Letters, v. 341–344, p. 176–185, doi:http://dx.doi.org/10.1016/j.epsl.2012.06.010
    OpenUrlCrossRef
  106. Opfergelt et al., 2012b.↵
    1. Opfergelt S.,
    2. Georg R. B.,
    3. Delvaux B.,
    4. Cabidoche Y.-M.,
    5. Burton K. W.,
    6. Halliday A. N.
    , 2012b, Silicon isotopes and the tracing of desilication in volcanic soil weathering sequences, Guadeloupe: Chemical Geology, v. 326–327, p. 113–122, doi:http://dx.doi.org/10.1016/j.chemgeo.2012.07.032
    OpenUrlCrossRef
  107. Paris et al., 2010.↵
    1. Paris G.,
    2. Gaillardet J.,
    3. Louvat P.
    , 2010, Geological evolution of seawater boron isotopic composition recorded in evaporites: Geology, v. 38, n. 11, p. 1035–1038, doi:http://dx.doi.org/10.1130/G31321.1
    OpenUrlAbstract/FREE Full Text
  108. Parkinson et al., 2007.↵
    1. Parkinson I. J.,
    2. Hammond S. J.,
    3. James R. H.,
    4. Rogers N. W.
    , 2007, High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems: Earth and Planetary Science Letters, v. 257, n. 3–4, p. 609–621, doi:http://dx.doi.org/10.1016/j.epsl.2007.03.023
    OpenUrlCrossRefGeoRefWeb of Science
  109. Pearce et al., 2012.↵
    1. Pearce C. R.,
    2. Saldi G. D.,
    3. Schott J.,
    4. Oelkers E. H.
    , 2012, Isotopic fractionation during congruent dissolution, precipitation and at equilibrium: Evidence from Mg isotopes: Geochimica et Cosmochimica Acta, v. 92, p. 170–183, doi:http://dx.doi.org/10.1016/j.gca.2012.05.045
    OpenUrlCrossRefGeoRefWeb of Science
  110. Pistiner and Henderson, 2003.↵
    1. Pistiner J. S.,
    2. Henderson G. M.
    , 2003, Lithium-isotope fractionation during continental weathering process: Earth and Planetary Science Letters, v. 214, n. 1–2, p. 327–339, doi:http://dx.doi.org/10.1016/S0012-821X(03)00348-0
    OpenUrlCrossRefGeoRefWeb of Science
  111. Pogge von Strandmann et al., 2006.↵
    1. Pogge von Strandmann P. A. E.,
    2. Burton K. W.,
    3. James R. H.,
    4. van Calsteren P.,
    5. Gíslason S. R.,
    6. Mokadem F.
    , 2006, Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain: Earth and Planetary Science Letters, v. 251, n. 1–2, p. 134–147, doi:http://dx.doi.org/10.1016/j.epsl.2006.09.001
    OpenUrlCrossRefGeoRefWeb of Science
  112. Pogge von Strandmann et al., 2008.↵
    1. Pogge von Strandmann P. A. E.,
    2. Burton K. W.,
    3. James R. H.,
    4. van Calsteren P.,
    5. Gíslason S. R.,
    6. Sigfússon B.
    , 2008, The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain: Earth and Planetary Science Letters, v. 276, n. 1–2, p. 187–197, doi:http://dx.doi.org/10.1016/j.epsl.2008.09.020
    OpenUrlCrossRefGeoRefWeb of Science
  113. Pogge von Strandmann et al., 2010.↵
    1. Pogge von Strandmann P. A. E.,
    2. Burton K. W.,
    3. James R. H.,
    4. van Calsteren P.,
    5. Gíslason S. R.
    , 2010, Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain: Chemical Geology, v. 270, n. 1–4, p. 227–239, doi:http://dx.doi.org/10.1016/j.chemgeo.2009.12.002
    OpenUrlCrossRefGeoRefWeb of Science
  114. Pogge von Strandmann et al., 2011.↵
    1. Pogge von Strandmann P. A. E.,
    2. Elliot T.,
    3. Marschall H. R.,
    4. Coath C.,
    5. Lai Y.-J.,
    6. Jeffcoate A. B.,
    7. Ionov D. A.
    , 2011, Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths: Geochimica et Cosmochimica Acta, v. 75, n. 18, p. 5247–5268, doi:http://dx.doi.org/10.1016/j.gca.2011.06.026
    OpenUrlCrossRefGeoRefWeb of Science
  115. Pogge von Strandmann et al., 2012.↵
    1. Pogge von Strandmann P. A. E.,
    2. Opfergelt S.,
    3. Lai Y.-J.,
    4. Sigfússon B.,
    5. Gíslason S. R.,
    6. Burton K. W.
    , 2012, Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland: Earth and Planetary Science Letters, v. 339–340, p. 11–23, doi:http://dx.doi.org/10.1016/j.epsl.2012.05.035
    OpenUrlCrossRef
  116. Poitrasson et al., 2008.↵
    1. Poitrasson F.,
    2. Viers J.,
    3. Martin F.,
    4. Braun J.-J.
    , 2008, Limited iron isotope variations in recent lateritic soils from Nsimi, Cameroon: implications for the global Fe geochemical cycles: Chemical Geology, v. 253, n. 1–2, p. 54–63, doi:http://dx.doi.org/10.1016/j.chemgeo.2008.04.011
    OpenUrlCrossRefGeoRefWeb of Science
  117. Richter et al., 2003.↵
    1. Richter F. M.,
    2. Davis A. M.,
    3. DePaolo D. J.,
    4. Watson E. B.
    , 2003, Isotope fractionation by chemical diffusion between molten basalt and rhyolite: Geochimica et Cosmochimica Acta, v. 67, n. 20, p. 3905–3923, doi:http://dx.doi.org/10.1016/S0016-7037(03)00174-1
    OpenUrlCrossRefGeoRefWeb of Science
  118. Riebe et al., 2001.↵
    1. Riebe C. S.,
    2. Kirchner J. W.,
    3. Granger D. E.,
    4. Finkel R. C.
    , 2001, Strong tectonic and weak climatic control of long-term chemical weathering rates: Geology, v. 29, n. 6, p. 511–514, doi:http://dx.doi.org/10.1130/0091-7613(2001)029〈0511:STAWCC〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  119. Riebe et al., 2004.↵
    1. Riebe C. S.,
    2. Kirchner J. W.,
    3. Finkel R. C.
    , 2004, Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes: Earth and Planetary Science Letters, v. 224, n. 3–4, p. 547–562, doi:http://dx.doi.org/10.1016/j.epsl.2004.05.019
    OpenUrlCrossRefGeoRefWeb of Science
  120. Rose et al., 2000.↵
    1. Rose E. F.,
    2. Chaussidon M.,
    3. France-Lanord C.
    , 2000, Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers: Geochimica et Cosmochimica Acta, v. 64, n. 3, p. 397–408, doi:http://dx.doi.org/10.1016/S0016-7037(99)00117-9
    OpenUrlCrossRefGeoRefWeb of Science
  121. Rudnick et al., 2004.↵
    1. Rudnick R. L.,
    2. Tomascak P. B.,
    3. Njo H. B.,
    4. Gardner R.
    , 2004, Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina: Chemical Geology, v. 212, n. 1–2, p. 45–57, doi:http://dx.doi.org/10.1016/j.chemgeo.2004.08.008
    OpenUrlCrossRefGeoRefWeb of Science
  122. Ryu et al., 2011.↵
    1. Ryu J.-S.,
    2. Jacobson A. D.,
    3. Holmden C.,
    4. Lundstrom C.,
    5. Zhang Z.
    , 2011, The major ion, δ44/40Ca, δ44/42Ca, and δ26/24Mg geochemistry of granite weathering at pH = 1 and T = 25 °C: power-law processes and the relative reactivity of minerals: Geochimica et Cosmochimica Acta, v. 75, n. 20, p. 6004–6026, doi:http://dx.doi.org/10.1016/j.gca.2011.07.025
    OpenUrlCrossRefGeoRefWeb of Science
  123. Saulnier et al., 2012.↵
    1. Saulnier S.,
    2. Rollion-Bard C.,
    3. Vigier N.,
    4. Chaussidon M.
    , 2012, Mg isotope fractionation during calcite precipitation: An experimental study: Geochimica et Cosmochimica Acta, v. 91, p. 75–91, doi:http://dx.doi.org/10.1016/j.gca.2012.05.024
    OpenUrlCrossRefGeoRefWeb of Science
  124. Savage et al., 2012.↵
    1. Savage P. S.,
    2. Georg R. B.,
    3. Williams H. M.,
    4. Turner S.,
    5. Halliday A. N.,
    6. Chappell B. W.
    , 2012, The silicon isotope composition of granites: Geochimica et Cosmochimica Acta, v. 92, p. 184–202, doi:http://dx.doi.org/10.1016/j.gca.2012.06.017
    OpenUrlCrossRefGeoRefWeb of Science
  125. Schauble et al., 2009.↵
    1. Schauble E. A.,
    2. Méheut M.,
    3. Hill P. S.
    , 2009, Combining metal stable isotope fractionation theory with experiments: Elements, v. 5, n. 6, p. 369–374, doi:http://dx.doi.org/10.2113/gselements.5.6.369
    OpenUrlAbstract/FREE Full Text
  126. Schmitt et al., 2003.↵
    1. Schmitt A.-D.,
    2. Chabaux F.,
    3. Stille P.
    , 2003, The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance: Earth and Planetary Science Letters, v. 213, n. 3–4, p. 503–518, doi:http://dx.doi.org/10.1016/S0012-821X(03)00341-8
    OpenUrlCrossRefGeoRefWeb of Science
  127. Schuessler et al., 2009.↵
    1. Schuessler J. A.,
    2. Schoenberg R.,
    3. Sigmarsson O.
    , 2009, Iron and lithium isotope systematics of the Hekla volcano, Iceland—Evidence for Fe isotope fractionation during magma differentiation: Chemical Geology, v. 258, n. 1–2, p. 78–91, doi:http://dx.doi.org/10.1016/j.chemgeo.2008.06.021
    OpenUrlCrossRefGeoRefWeb of Science
  128. Sime et al., 2007.↵
    1. Sime N. E.,
    2. De La Rocha C. L.,
    3. Tipper E. T.,
    4. Tripati A.,
    5. Galy A.,
    6. Bickle M. J.
    , 2007, Interpreting the Ca isotope record of marin biogenic carbonates: Geochimica et Cosmochimica Acta, v. 71, n. 16, p. 3979–3989, doi:http://dx.doi.org/10.1016/j.gca.2007.06.009
    OpenUrlCrossRefGeoRefWeb of Science
  129. Skulan et al., 2002.↵
    1. Skulan J. L.,
    2. Beard B. L.,
    3. Johnson C. M.
    , 2002, Kinetic and equilibrium Fe isotope between aqueous Fe(III) and hematite: Geochimica et Cosmochimica Acta, v. 66, n. 17, p. 2995–3015, doi:http://dx.doi.org/10.1016/S0016-7037(02)00902-X
    OpenUrlCrossRefGeoRefWeb of Science
  130. Spivack et al., 1987.↵
    1. Spivack A. J.,
    2. Palmer M. R.,
    3. Edmond J. M.
    , 1987, The sedimentary cycle of boron isotopes: Geochimica et Cosmochimica Acta, v. 51, n. 7, p. 1939–1949, doi:http://dx.doi.org/10.1016/0016-7037(87)90183-9
    OpenUrlCrossRefGeoRefWeb of Science
  131. Steinhoefel et al., 2011.↵
    1. Steinhoefel G.,
    2. Breuer J.,
    3. von Blanckenburg F.,
    4. Horn I.,
    5. Kaczorek D.,
    6. Sommer M.
    , 2011, Micrometer silicon isotope diagnostics of soils by UV femtosecond laser ablation: Chemical Geology, v. 286, n. 3–4, p. 280–289, doi:http://dx.doi.org/10.1016/j.chemgeo.2011.05.013
    OpenUrlCrossRefGeoRefWeb of Science
  132. Teng et al., 2004.↵
    1. Teng F.-Z.,
    2. McDonough W. F.,
    3. Rudnick R. L.,
    4. Dalpé C.,
    5. Tomascak P. B.,
    6. Chappell B. W.,
    7. Gao S.
    , 2004, Lithium isotopic composition and concentration of the upper continental crust: Geochimica et Cosmochimica Acta, v. 68, n. 20, p. 4167–4178, doi:http://dx.doi.org/10.1016/j.gca.2004.03.031
    OpenUrlCrossRefGeoRefWeb of Science
  133. Teng et al., 2009.↵
    1. Teng F.-Z.,
    2. Rudnick R. L.,
    3. McDonough W. F.,
    4. Wu F.-Y.
    , 2009, Lithium isotopic systematics of A-type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the continental crust: Chemical Geology, v. 262, n. 3–4, p. 370–379, doi:http://dx.doi.org/10.1016/j.chemgeo.2009.02.009
    OpenUrlCrossRefGeoRefWeb of Science
  134. Teng et al., 2010.↵
    1. Teng F.-Z.,
    2. Li W.-Y.,
    3. Rudnick R. L.,
    4. Gardner R.
    , 2010, Contrasting lithium and magnesium isotope fractionation during continental weathering: Earth and Planetary Science Letters, v. 300, n. 1–2, p. 63–71, doi:http://dx.doi.org/10.1016/j.epsl.2010.09.036
    OpenUrlCrossRefGeoRefWeb of Science
  135. Thompson et al., 2007.↵
    1. Thompson A.,
    2. Ruiz J.,
    3. Chadwick O. A.,
    4. Titus M.,
    5. Chorover J.
    , 2007, Rayleigh fractionation of iron isotopes during pedogenesis along a climate sequence of Hawaiian basalt: Chemical Geology, v. 238, n. 1–2, p. 72–83, doi:http://dx.doi.org/10.1016/j.chemgeo.2006.11.005
    OpenUrlCrossRefGeoRefWeb of Science
  136. Tipper et al., 2006a.↵
    1. Tipper E. T.,
    2. Galy A.,
    3. Bickle M. J.
    , 2006a, Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle: Earth and Planetary Science Letters, v. 247, n. 3–4, p. 267–279, doi:http://dx.doi.org/10.1016/j.epsl.2006.04.033
    OpenUrlCrossRefGeoRefWeb of Science
  137. Tipper et al., 2006b.↵
    1. Tipper E. T.,
    2. Galy A.,
    3. Gaillardet J.,
    4. Bickle M. J.,
    5. Elderfield H.,
    6. Carder E. A.
    , 2006b, The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios: Earth and Planetary Science Letters, v. 250, n. 1–2, p. 241–253, doi:http://dx.doi.org/10.1016/j.epsl.2006.07.037
    OpenUrlCrossRefGeoRefWeb of Science
  138. Tipper et al., 2008a.↵
    1. Tipper E. T.,
    2. Galy A.,
    3. Bickle M. J.
    , 2008a, Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: lithological or fractionation control?: Geochimica et Cosmochimica Acta, v. 72, n. 4, p. 1057–1075, doi:http://dx.doi.org/10.1016/j.gca.2007.11.029
    OpenUrlCrossRefGeoRefWeb of Science
  139. Tipper et al., 2008b.
    1. Tipper E. T.,
    2. Louvat P.,
    3. Capmas F.,
    4. Galy A.,
    5. Gaillardet J.
    , 2008b, Accuracy of stable Mg and Ca isotope data obtained by MC-ICP-MS using the standard addition method: Chemical Geology, v. 257, n. 1–2, p. 65–75, doi:http://dx.doi.org/10.1016/j.chemgeo.2008.08.016
    OpenUrlCrossRefGeoRefWeb of Science
  140. Tipper et al., 2010a.↵
    1. Tipper E. T.,
    2. Gaillardet J.,
    3. Louvat P.,
    4. Capmas F.,
    5. White A. F.
    , 2010a, Mg isotope constraints on soil pore-fluid chemistry: evidence from Santa Cruz, California: Geochimica et Cosmochimica Acta, v. 74, n. 14, p. 3883–3896, doi:http://dx.doi.org/10.1016/j.gca.2010.04.021
    OpenUrlCrossRefGeoRefWeb of Science
  141. Tipper et al., 2010b.↵
    1. Tipper E. T.,
    2. Gaillardet J.,
    3. Galy A.,
    4. Louvat P.,
    5. Bickle M.,
    6. Capmas F.
    , 2010b, Calcium isotope ratios in the world's largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes: Global Biogeochemical Cycles, v. 24, n. 3, GB3019, doi:http://dx.doi.org/10.1029/2009GB003574
    OpenUrlCrossRef
  142. Tipper et al., 2012a.↵
    1. Tipper E. T.,
    2. Lemarchand E.,
    3. Hindshaw R. S.,
    4. Reynolds B. C.,
    5. Bourdon B.
    , 2012a, Seasonal sensitivity of weathering processes: Hints from magnesium isotopes in a glacial stream: Chemical Geology, v. 312–313, p. 80–92, doi:http://dx.doi.org/10.1016/j.chemgeo.2012.04.002
    OpenUrlCrossRef
  143. Tipper et al., 2012b.↵
    1. Tipper E. T.,
    2. Calmels D.,
    3. Gaillardet J.,
    4. Louvat P.,
    5. Capmas F.,
    6. Dubacq B.
    , 2012b, Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent fractionation during weathering: Earth and Planetary Science Letters, v. 333–334, p. 35–45, doi:http://dx.doi.org/10.1016/j.epsl.2012.04.023
    OpenUrlCrossRef
  144. Turner et al., 2003.↵
    1. Turner B. F.,
    2. Stallard R. F.,
    3. Brantley S. L.
    , 2003, Investigation of in situ weathering of quartz diorite bedrock in the Rio Icacos basin, Experimental Forest, Puerto Rico: Chemical Geology, v. 202, n. 3–4, p. 313–341, doi:http://dx.doi.org/10.1016/j.chemgeo.2003.05.001
    OpenUrlCrossRefGeoRefWeb of Science
  145. Verney-Carron et al., 2011.↵
    1. Verney-Carron A.,
    2. Vigier N.,
    3. Millot R.
    , 2011, Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering: Geochimica et Cosmochimica Acta, v. 75, n, 12, p. 3452–3468, doi:http://dx.doi.org/10.1016/j.gca.2011.03.019
    OpenUrlCrossRefGeoRefWeb of Science
  146. Viers et al., 2009.↵
    1. Viers J.,
    2. Dupré B.,
    3. Gaillardet J.
    , 2009, Chemical composition of suspended sediments in World Rivers: New insights from a new database: Science of The Total Enviroment, v. 407, n. 2, p. 853–868, doi:http://dx.doi.org/10.1016/j.scitotenv.2008.09.053
    OpenUrlCrossRefWeb of Science
  147. Vigier et al., 2008.↵
    1. Vigier N.,
    2. Decarreau A.,
    3. Millot R.,
    4. Carignan J.,
    5. Petit S.,
    6. France-Lanord C.
    , 2008, Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle: Geochimica et Cosmochimica Acta, v. 72, n. 3, p. 780–792, doi:http://dx.doi.org/10.1016/j.gca.2007.11.011
    OpenUrlCrossRefGeoRefWeb of Science
  148. von Blanckenburg et al., 2009.↵
    1. von Blanckenburg F.,
    2. von Wirén N.,
    3. Guelke M.,
    4. Weiss D. J.,
    5. Bullen T. D.
    , 2009, Fractionation of metal stable isotopes by higher plants: Elements, v. 5, n. 6, p. 375–380, doi:http://dx.doi.org/10.2113/gselements.5.6.375
    OpenUrlAbstract/FREE Full Text
  149. Welch et al., 2003.↵
    1. Welch S. A.,
    2. Beard B. L.,
    3. Johnson C. M.,
    4. Braterman P. S.
    , 2003, Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III): Geochimica et Cosmochimica Acta, v. 67, n. 22, p. 4231–4250, doi:http://dx.doi.org/10.1016/S0016-7037(03)00266-7
    OpenUrlCrossRefGeoRefWeb of Science
  150. West et al., 2005.↵
    1. West A. J.,
    2. Galy A.,
    3. Bickle M.
    , 2005, Tectonic and climatic controls on silicate weathering: Earth and Planetary Science Letters, v. 235, n. 1–2, p. 211–228, doi:http://dx.doi.org/10.1016/j.epsl.2005.03.020
    OpenUrlCrossRefGeoRefWeb of Science
  151. White et al., 1998.↵
    1. White A. F.,
    2. Blum A. E.,
    3. Schulz M. S.,
    4. Vivit D. V.,
    5. Stonestrom D. A.,
    6. Larsen M.,
    7. Murphy S. F.,
    8. Eberl D.
    , 1998, Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes: Geochimica et Cosmochimica Acta, v. 62, n. 2, p. 209–226, doi:http://dx.doi.org/10.1016/S0016-7037(97)00335-9
    OpenUrlCrossRefGeoRefWeb of Science
  152. Wiederhold et al., 2006.↵
    1. Wiederhold J. G.,
    2. Kraemer S. M.,
    3. Teutsch N.,
    4. Borer P.,
    5. Halliday A. N.,
    6. Kretzschmar R.
    , 2006, Iron isotope fractionation during proton-promoted, ligand-controlled and reductive dissolution of goethite: Environmental Science and Technology, v. 40, n. 12, p. 3787–3793, doi:http://dx.doi.org/10.1021/es052228y
    OpenUrlCrossRefPubMed
  153. Wiederhold et al., 2007a.↵
    1. Wiederhold J. G.,
    2. Teutsch N.,
    3. Kraemer S. M.,
    4. Halliday A. N.,
    5. Kretzschmar R.
    , 2007a, Iron isotope fractionation in oxic soils by mineral weathering and podzolisation: Geochimica et Cosmochimica Acta, v. 71, n. 23, p. 5821–5833, doi:http://dx.doi.org/10.1016/j.gca.2007.07.023
    OpenUrlCrossRefGeoRefWeb of Science
  154. Wiederhold et al., 2007b.↵
    1. Wiederhold J. G.,
    2. Teutsch N.,
    3. Kraemer S. M.,
    4. Halliday A. N.,
    5. Kretzschmar R.
    , 2007b, Iron isotope fractionation during pedogenesis in redoximorphic soils: Soil Science Society of America Journal, v. 71, n. 6, p. 1840–1850, doi:http://dx.doi.org/10.2136/sssaj2006.0379
    OpenUrlCrossRefGeoRefWeb of Science
  155. Wiegand et al., 2005.↵
    1. Wiegand B. A.,
    2. Chadwick O. A.,
    3. Vitousek P. M.,
    4. Wooden J. L.
    , 2005, Ca cycling and isotopic fluxes in forested ecosystems in Hawaii: Geophysical Research Letters, v. 32, n. 11, L11404, doi:http://dx.doi.org/10.1029/2005GL022746
    OpenUrlCrossRef
  156. Wimpenny et al., 2010a.↵
    1. Wimpenny J.,
    2. James R. H.,
    3. Burton K. W.,
    4. Gannoun A.,
    5. Mokadem F.,
    6. Gíslason S. R.
    , 2010a, Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers: Earth and Planetary Science Letters, v. 290, n. 3–4, p. 427–437, doi:http://dx.doi.org/10.1016/j.epsl.2009.12.042
    OpenUrlCrossRefGeoRefWeb of Science
  157. Wimpenny et al., 2010b.↵
    1. Wimpenny J.,
    2. Gíslason S. R.,
    3. James R. H.,
    4. Gannoun A.,
    5. Pogge Von Strandmann P. A. E.,
    6. Burton K. W.
    , 2010b, The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt: Geochimica et Cosmochimica Acta, v. 74, n. 18, p. 5259–5279, doi:http://dx.doi.org/10.1016/j.gca.2010.06.028
    OpenUrlCrossRefGeoRefWeb of Science
  158. Wimpenny et al., 2011.↵
    1. Wimpenny J.,
    2. Burton K. W.,
    3. James R. H.,
    4. Gannoun A.,
    5. Mokadem F.,
    6. Gíslason S. R.
    , 2011, The behaviour of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland: Earth and Planetary Science Letters, v. 304, n. 1–2, p. 260–269, doi:http://dx.doi.org/10.1016/j.epsl.2011.02.008
    OpenUrlCrossRefGeoRefWeb of Science
  159. Wischmeyer et al., 2003.↵
    1. Wischmeyer A. G.,
    2. De La Rocha C. L.,
    3. Maier-Reimer E.,
    4. Wolf-Gladrow D. A.
    , 2003, Control mechanisms for the oceanic distribution of silicon isotopes: Global Biogeochemical Cycles, v. 17, n. 3, GB002022, doi:http://dx.doi.org/10.1029/2002GB002022
    OpenUrlCrossRef
  160. Yesavage et al., 2012.↵
    1. Yesavage T.,
    2. Fantle M. S.,
    3. Vervoort J.,
    4. Mathur R.,
    5. Jin L.,
    6. Liermann L. J.,
    7. Brantley S. L.
    , 2012, Fe cycling in the Shale Hills Critical Zone Observatory, Pennsylvania: An analysis of biogeochemical weathering and Fe isotope fractionation: Geochimica et Cosmochimica Acta, v. 99, p. 18–38, doi:http://dx.doi.org/10.1016/j.gca.2012.09.029
    OpenUrlCrossRefGeoRefWeb of Science
  161. Zhu and McDougall, 1998.↵
    1. Zhu P.,
    2. McDougall J. D.
    , 1998, Calcium isotopes in the marine environment and the oceanic calcium cycle: Geochimica et Cosmochimica Acta, v. 62, n. 10, p. 1691–1698, doi:http://dx.doi.org/10.1016/S0016-7037(98)00110-0
    OpenUrlCrossRefGeoRefWeb of Science
  162. Ziegler et al., 2005a.↵
    1. Ziegler K.,
    2. Chadwick O. A.,
    3. White A. F.,
    4. Brzezinski M. A.
    , 2005a, δ30Si systematics in a granitic saprolite, Puerto Rico: Geology, v. 33, n. 10, p. 817–820, doi:http://dx.doi.org/10.1130/G21707.1
    OpenUrlAbstract/FREE Full Text
  163. Ziegler et al., 2005b.↵
    1. Ziegler K.,
    2. Chadwick O. A.,
    3. Brzezinski M. A.,
    4. Kelly E. F.
    , 2005b, Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands: Geochimica et Cosmochimica Acta, v. 69, n. 19, p. 4597–4610, doi:http://dx.doi.org/10.1016/j.gca.2005.05.008
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Science: 313 (4)
American Journal of Science
Vol. 313, Issue 4
1 Apr 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Modeling novel stable isotope ratios in the weathering zone
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 9 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Modeling novel stable isotope ratios in the weathering zone
Julien Bouchez, Friedhelm von Blanckenburg, Jan A. Schuessler
American Journal of Science Apr 2013, 313 (4) 267-308; DOI: 10.2475/04.2013.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Modeling novel stable isotope ratios in the weathering zone
Julien Bouchez, Friedhelm von Blanckenburg, Jan A. Schuessler
American Journal of Science Apr 2013, 313 (4) 267-308; DOI: 10.2475/04.2013.01
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MODEL DESCRIPTION
    • DISCUSSING AND TESTING THE MODEL ASSUMPTIONS
    • PREDICTING THE ISOTOPE COMPOSITION OF THE WEATHERING ZONE COMPARTMENTS
    • CALIBRATING ISOTOPE FRACTIONATION FACTORS FROM FIELD MEASUREMENTS
    • EXPORTING FRACTIONATED MATERIAL: THE LINKS BETWEEN ISOTOPE RATIOS AND WEATHERING AND EROSION FLUXES
    • DISCLOSING PAST GEOMORPHIC REGIMES FROM THE SEDIMENTARY RECORD: THE EXAMPLE OF Li ISOTOPES
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Appendix A
    • Appendix B
    • Appendix C
    • Appendix D
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Presentation and applications of mixing elements and dissolved isotopes in rivers (MEANDIR), a customizable MATLAB model for Monte Carlo inversion of dissolved river chemistry
  • Tracing weathering regimes using the lithium isotope composition of detrital sediments
  • Lithium Isotope Geochemistry
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Novel stable isotopes
  • box-model
  • weathering regime
  • Critical Zone
  • river geochemistry
  • isotope fractionation factors
  • soils

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire