Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia

Nicholas L. Swanson-Hysell, Adam C. Maloof, Joseph L. Kirschvink, David A. D. Evans, Galen P. Halverson and Matthew T. Hurtgen
American Journal of Science October 2012, 312 (8) 817-884; DOI: https://doi.org/10.2475/08.2012.01
Nicholas L. Swanson-Hysell
*Department of Geosciences, Princeton University, Guyot Hall, Washington Road, Princeton, New Jersey 08544, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: swanson-hysell@berkeley.edu
Adam C. Maloof
*Department of Geosciences, Princeton University, Guyot Hall, Washington Road, Princeton, New Jersey 08544, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph L. Kirschvink
**Division of Geological & Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. D. Evans
***Department of Geology & Geophysics, Yale University, New Haven, Connecticut 06520, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Galen P. Halverson
§Department of Earth & Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew T. Hurtgen
§§Department of Earth & Planetary Sciences, Northwestern University, 1850 Campus Drive, Evanston, Illinois, 60208 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Abrajevitch A.,
    2. Kodama K.
    , 2009, Biochemical vs. detrital mechanism of remanence acquisition in marine carbonates: A lesson from the K-T boundary interval: Earth and Planetary Science Letters, v. 286, n. 1–2, p. 269–277, doi:http://dx.doi.org/10.1016/j.epsl.2009.06.035
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Abrajevitch A.,
    2. Van der Voo R.
    , 2010, Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis: Earth and Planetary Science Letters, v. 293, n. 1–2, p. 164–170, doi:http://dx.doi.org/10.1016/j.epsl.2010.02.038
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    1. Ahmand M.,
    2. Scrimgeour I.
    , 2006, Geological map of the Northern Territory: Northern Territory Geological Survey of Australia, Technical Report, 1:2,500,000 scale.
  4. ↵
    1. Aitken A. R. A.,
    2. Betts P. G.,
    3. Ailleres L.
    , 2009, The architecture, kinematics, and lithospheric processes of a compressional intraplate orogen occurring under Gondwana assembly: The Petermann orogeny, central Australia: Lithosphere, v. 1, n. 6, p. 343–357, doi:http://dx.doi.org/10.1130/L39.1
    OpenUrlCrossRef
  5. ↵
    1. Alene M.,
    2. Jenkin G. R. T.,
    3. Leng M. J.,
    4. Darbyshire D. P. F.
    , 2006, The Tambien Group, Ethiopia: An early Cryogenian (ca. 800-735 Ma) Neoproterozoic sequence in the Arabian-Nubian Shield: Precambrian Research, v. 147, n. 1–2, p. 79–99, doi:http://dx.doi.org/10.1016/j.precamres.2006.02.002
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Ambrose G. J.,
    2. Dunster T. N.,
    3. Munson T. J.,
    4. Edgoose C.
    , 2010, Well completion reports for NTGS stratigraphic drillholes LA05DD01 and BR05DD01, southwestern Amadeus Basin: Northern Territory Geological Survey, Technical Report, Record 2010-015.
    1. Anderson K. L.,
    2. Lackie M. A.,
    3. Clark D. A.,
    4. Schmidt P. W.
    , 2003, Paleomagnetism of the Newcastle Range, northern Queensland: Eastern Gondwana in the Late Paleozoic: Journal of Geophysical Research—Solid Earth, v. 108, 2282, doi:http://dx.doi.org/10.1029/2002JB001921
    OpenUrlCrossRef
  7. ↵
    1. Anderson K. L.,
    2. Lackie M. A.,
    3. Clark D. A.
    , 2004a, Palaeomagnetic results from the Palaeozoic basement of the southern Drummond Basin, central Queensland, Australia: Geophysical Journal International, v. 159, n. 2, p. 473–485, doi:http://dx.doi.org/10.1111/j.1365-246X.2004.02393.x
    OpenUrlCrossRefWeb of Science
    1. Anderson K. L.,
    2. Lackie M. A.,
    3. Clark D. A.
    , 2004b, Return to Black Mountain: palaeomagnetic reassessment of the Chatsworth and Ninmaroo formations, western Queensland, Australia: Geophysical Journal International, v. 157, n. 1, p. 87–104, doi:http://dx.doi.org/10.1111/j.1365-246X.2003.02164.x
    OpenUrlCrossRefWeb of Science
  8. ↵
    1. Bagas L.
    , 2004, Proterozoic evolution and tectonic setting of the northwest Paterson Orogen, Western Australia: Precambrian Research, v. 128, n. 3–4, p. 475–496, doi:http://dx.doi.org/10.1016/j.precamres.2003.09.011
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Barron E. J.
    , 1981, Paleogeography as a climatic forcing factor: Geologische Rundschau, v. 70, n. 2, p. 737–747, doi:http://dx.doi.org/10.1007/BF01822147
    OpenUrlGeoRef
  10. ↵
    1. Belkaaloul N. K.,
    2. Aissaoui D. M.
    , 1997, Nature and origin of magnetic minerals within the Middle Jurassic shallow-water carbonate rocks of the Paris Basin, France: implications for magnetostratigraphic dating: Geophysical Journal International, v. 130, n. 2, p. 411–421, doi:http://dx.doi.org/10.1111/j.1365-246X.1997.tb05657.x
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    1. Bell R.,
    2. Jefferson C.
    , 1987, A hypothesis for an Australia-Canadian connection in the late Proterozoic and the birth of the Pacific Ocean: Proceedings of the Pacific Rim Congress, v. 87, p. 207–222.
    OpenUrl
  12. ↵
    1. Berquó T. S.,
    2. Imbernon R. A. L.,
    3. Blot A.,
    4. Franco D. R.,
    5. Toledo M. C. M.,
    6. Partiti C. S. M.
    , 2007, Low temperature magnetism and Mössbauer spectroscopy study from natural goethite: Physics and Chemistry of Minerals, v. 34, n. 5, p. 287–294, doi:http://dx.doi.org/10.1007/s00269-007-0147-9
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Besnus M. J.,
    2. Meyer A. J.
    , 1964, Nouvelles données expérimentales sur le magnétisme de la pyrrhotine naturelle: Proceedings International Conference Magazine, v. 20, p. 507–511.
    OpenUrl
  14. ↵
    1. Blakemore R.
    , 1975, Magnetotactic bacteria: Science, v. 190, n. 4212, p. 377–379, doi:http://dx.doi.org/10.1126/science.170679
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Bond G. C.,
    2. Nickleson P. A.,
    3. Kominz M. A.
    , 1984, Breakup of a supercontinent between 625 and 555 Ma: new evidence and implications for continental histories: Earth and Planetary Science Letters, v. 70, n. 2, p. 325–345, doi:http://dx.doi.org/10.1016/0012-821X(84)90017-7
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. Bowring S. A.,
    2. Grotzinger J. P.,
    3. Condon D. J.,
    4. Ramezani J.,
    5. Newall M. J.,
    6. Allen P. A.
    , 2007, Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman: American Journal of Science, v. 307, n. 10, p. 1097–1145, doi:http://dx.doi.org/10.2475/10.2007.01
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Brookfield M. E.
    , 1993, Neoproterozoic Laurentia-Australia fit: Geology, v. 21, n. 8, p. 683–686, doi:http://dx.doi.org/10.1130/0091-7613(1993)021〈0683:NLAF〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Brown L. L.,
    2. McEnroe S. A.
    , 2012, Paleomagnetism and magnetic mineralogy of Grenville metamorphic and igneous rocks, Adirondack Highlands, USA: Precambrian Research, v. 212–213, p. 57–74, doi:http://dx.doi.org/10.1016/j.precamres.2012.04.012
    OpenUrlCrossRef
    1. Parker A. J.,
    2. Rickwood P. C.,
    3. Tucker D. H.
    1. Buchan K. L.,
    2. Halls H.
    , 1990, Paleomagnetism of Proterozoic mafic dyke swarms of the Canadian Shield in Parker A. J., Rickwood P. C., Tucker D. H., editors, Mafic dike and Emplacement mechanisms: Rotterdam, Balkema, p. 209–230.
    1. Buchan K. L.,
    2. Mertanen S.,
    3. Park R. G.,
    4. Pesonen L. J.,
    5. Elming S. A.,
    6. Abrahamsen N.,
    7. Bylund G.
    , 2000, Comparing the drift of Laurentia and Baltica in the Proterozoic: the importance of key paleomagnetic poles: Tectonophysics, v. 319, n. 3, p. 167–198, doi:http://dx.doi.org/10.1016/S0040-1951(00)00032-9
    OpenUrlCrossRefGeoRefWeb of Science
  19. ↵
    1. Buick I. S.,
    2. Storkey A.,
    3. Williams I. S.
    , 2008, Timing relationships between pegmatite emplacement, metamorphism and deformation during the intra-plate Alice Springs Orogeny, central Australia: Journal of Metamorphic Geology, v. 26, n. 9, p. 915–936, doi:http://dx.doi.org/10.1111/j.1525-1314.2008.00794.x
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    1. Burrett C.,
    2. Berry R.
    , 2000, Proterozoic Australia Western United States (AUSWUS) fit between Laurentia and Australia: Geology, v. 28, n. 2, p. 103–106, doi:http://dx.doi.org/10.1130/0091-7613(2000)028〈0103:PAWUSA〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Camacho A.,
    2. Compston W.,
    3. McCulloch M.,
    4. McDougall I.
    , 1997, Timing and exhumation of eclogite facies shear zones, Musgrave Block, central Australia: Journal of Metamorphic Geology, v. 15, n. 6, p. 735–751, doi:http://dx.doi.org/10.1111/j.1525-1314.1997.00053.x
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Canfield D. E.,
    2. Poulton S. W.,
    3. Narbonne G. M.
    , 2007, Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life: Science, v. 315, n. 5808, p. 92–95, doi:http://dx.doi.org/10.1126/science.1135013
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Cawood P. A.,
    2. Pisarevsky S. A.
    , 2006, Was Baltica right-way-up or upside-down in the Neoproterozoic?: Journal of the Geological Society, London, v. 163, n. 5, p. 753–759, doi:http://dx.doi.org/10.1144/0016-76492005-126
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Chamley H.
    , 1989, Clay Sedimentology: Berlin, Springer-Verlag, 623 p.
  25. ↵
    1. Channell J. E. T.,
    2. McCabe C.
    , 1994, Comparison of magnetic hysteresis parameters of unremagnetized and remagnetized limestones: Journal of Geophysical Research, v. 99, n. B3, p. 4613–4623, doi:http://dx.doi.org/10.1029/93JB02578
    OpenUrlCrossRefGeoRefWeb of Science
    1. Chen Z.,
    2. Li Z. X.,
    3. Powell C. M.,
    4. Balme B. E.
    , 1993, Palaeomagnetism of the Brewer Conglomerate in central Australia, and fast movement of Gondwanaland during the Late Devonian: Geophysical Journal International, v. 115, n. 2, p. 564–574, doi:http://dx.doi.org/10.1111/j.1365-246X.1993.tb01207.x
    OpenUrlGeoRefWeb of Science
    1. Chen Z.,
    2. Li Z. X.,
    3. Powell C. M.
    , 1995, Paleomagnetism of the Upper Devonian reef complexes, Canning Basin, Western Australia: Tectonics, v. 14, n. 1, p. 154–167, doi:http://dx.doi.org/10.1029/94TC01622
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Cisowski S.
    , 1981, Interacting vs. non-interacting single-domain behavior in natural and synthetic samples: Physics of the Earth and Planetary Interiors, v. 26, n. 1–2, p. 56–62, doi:http://dx.doi.org/10.1016/0031-9201(81)90097-2
    OpenUrlCrossRefGeoRefWeb of Science
    1. Clark D. A.
    , 1994, Magnetic petrophysics and palaeomagnetism of the Fitzroy Leases, central Queensland—implications for exploration: CSIRO Australian Exploration and Mining Report, v. 6C, 28 p.
    OpenUrl
    1. Clark D. A.
    , 1996, Palaeomagnetism of the Mount Leyshon Intrusive Complex, the Tuckers Igneous Complex and the Ravenswood Batholith: CSIRO Australian Exploraton and Mining Report, v. 318R.
    1. Clark D. A.,
    2. Lackie M. A.
    , 2003, Palaeomagnetism of the Early Permian Mount Leyshon Intrusive Complex and Tuckers Igneous Complex, North Queensland, Australia: Geophysical Journal International, v. 153, n. 3, p. 523–547, doi:http://dx.doi.org/10.1046/j.1365-246X.2003.01907.x
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Corkeron M.
    , 2007, “Cap carbonates” and Neoproterozoic glacigenic successions from the Kimberley region, north-west Australia: Sedimentology, v. 54, n. 4, p. 871–903, doi:http://dx.doi.org/10.1111/j.1365-3091.2007.00864.x
    OpenUrlCrossRefGeoRefWeb of Science
  28. ↵
    1. Creveling J. R.,
    2. Mitrovica J. X.,
    3. Chan N.-H.,
    4. Latychev K.,
    5. Matsuyama I.
    , 2012, Mechanisms for oscillatory true polar wander: Nature, v. 491, n. 7423, p. 244–248, doi:http://dx.doi.org/10.1038/nature11571
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  29. ↵
    1. Cuadros J.
    , 2006, Modeling of smectite illitization in burial diagenesis environments: Geochimica et Cosmochimica Acta, v. 70, n. 15, p. 4181–4195, doi:http://dx.doi.org/10.1016/j.gca.2006.06.1372
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. D'Agrella-Filho M. S.,
    2. Tohver E.,
    3. Santos J. O. S.,
    4. Elming S.-A.,
    5. Trindade R. I. F.,
    6. Pacca I. I. G.,
    7. Geraldes M. C.
    , 2008, Direct dating of paleomagnetic results from Precambrian sediments in the Amazon craton: Evidence for Grenvillian emplacement of exotic crust in SE Appalachians of North America: Earth and Planetary Science Letters, v. 267, n. 1–2, p. 188–199, doi:http://dx.doi.org/10.1016/j.epsl.2007.11.030
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Dalziel I. W. D.
    , 1991, Pacific margins of Laurentia and East Antarctica–Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent: Geology, v. 19, n. 6, p. 598–601, doi:http://dx.doi.org/10.1130/0091-7613(1991)019〈0598:PMOLAE〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Davis D. W.,
    2. Green J. C.
    , 1997, Geochronology of the North American Midcontinent rift in western Lake Superior and implications for its geodynamic evolution: Canadian Journal of Earth Science, v. 34, n. 4, p. 476–488, doi:http://dx.doi.org/10.1139/e17-039
    OpenUrlAbstract
  33. ↵
    1. Day R.,
    2. Fuller M.,
    3. Schmidt V. A.
    , 1977, Hysteresis properties of titanomagnetites: Grain size and compositional dependence: Physics of the Earth and Planetary Interiors, v. 13, n. 4, p. 260–266, doi:http://dx.doi.org/10.1016/0031-9201(77)90108-X
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Dekkers M. J.
    , 1989, Magnetic properties of natural goethite—II. TRM behaviour during thermal and alternating field demagnetization and low-temperature treatment: Geophysical Journal International, v. 97, n. 2, p. 341–355, doi:http://dx.doi.org/10.1111/j.1365-246X.1989.tb00505.x
    OpenUrlCrossRefWeb of Science
  35. ↵
    1. Dekkers M. J.,
    2. Mattéi J.-L.,
    3. Fillion G.,
    4. Rochette P.
    , 1989, Grain-size dependence of the magnetic behavior of pyrrhotite during its low-temperature transition at 34 K: Geophysical Research Letters, v. 16, n. 8, p. 855–858, doi:http://dx.doi.org/10.1029/GL016i008p00855
    OpenUrlCrossRefGeoRefWeb of Science
    1. Denyszyn S. W.,
    2. Halls H. C.,
    3. Davis D. W.,
    4. Evans D. A. D.
    , 2009, Paleomagnetism and U-Pb geochronology of Franklin dykes in High Arctic Canada and Greenland: a revised age and paleomagnetic pole constraining block rotations in the Nares Strait region: Canadian Journal of Earth Sciences, v. 46, n. 3, p. 689–705, doi:http://dx.doi.org/10.1139/E09-042
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Diehl J. F.,
    2. Haig T. D.
    , 1994, A paleomagnetic study of the lava flows within the Copper Harbor Conglomerate, Michigan: new results and implications: Canadian Journal of Earth Sciences, v. 31, p. 369–380, doi:http://dx.doi.org/10.1139/e94-034
    OpenUrlAbstract
  37. ↵
    1. Dinarès-Turell J.,
    2. Dekkers M. J.
    , 1999, Diagenesis and remanence acquisition in the Lower Pliocene Trubi marls at Punta di Maiata (southern Sicily): palaeomagnetic and rock magnetic observations: Geological Society, London, Special Publications, v. 151, p. 53–69, doi:http://dx.doi.org/10.1144/GSL.SP.1999.151.01.07
    OpenUrlCrossRef
  38. ↵
    1. Donnadieu Y.,
    2. Goddéris Y.,
    3. Ramstein G.,
    4. Nédelec A.,
    5. Meert J.
    , 2004, A “snowball Earth” climate triggered by continental break-up through changes in runoff: Nature, v. 428, p. 303–306, doi:http://dx.doi.org/10.1038/nature02408
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  39. ↵
    1. Duebendorfer E. M.
    , 2002, Regional correlation of Mesoproterozoic structures and deformational events in the Albany-Fraser orogen, Western Australia: Precambrian Research, v. 116, n. 1–2, p. 129–154, doi:http://dx.doi.org/10.1016/S0301-9268(02)00017-7
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    1. Dunlap W. J.,
    2. Teyssier C.
    , 1995, Paleozoic deformation and isotopic disturbance in the southeastern Arunta Block, central Australia: Precambrian Research, v. 71, n. 1–4, p. 229–250, doi:http://dx.doi.org/10.1016/0301-9268(94)00063-W
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    1. Dunlap W. J.,
    2. Teyssier C.,
    3. McDougall I.,
    4. Baldwin S.
    , 1991, Ages of deformation from K/Ar and 40Ar/39Ar dating of white micas: Geology, v. 19, n. 12, p. 1213–1216 doi:http://dx.doi.org/10.1130/0091-7613(1991)019〈1213:AODFKA〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Dunlap W. J.,
    2. Teyssier C.,
    3. McDougall I.,
    4. Baldwin S.
    , 1995, Thermal and structural evolution of the intracratonic Arltunga Nappe Complex, central Australia: Tectonics, v. 14, n. 5, p. 1182–1204, doi:http://dx.doi.org/10.1029/95TC00335
    OpenUrlCrossRefGeoRefWeb of Science
  43. ↵
    1. Dunlop D. J.
    , 2002a, Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data: Journal of Geophysical Research, v. 107, 2056, doi:http://dx.doi.org/10.1029/2001JB000486
    OpenUrlCrossRef
  44. ↵
    1. Dunlop D. J.
    , 2002b, Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils: Journal of Geophysical Research, v. 107, 2057, doi:http://dx.doi.org/10.1029/2001JB000487
    OpenUrlCrossRef
    1. Dunlop D. J.,
    2. Özdemir Ö.
    , 1997, Rock Magnetism: Fundamentals and frontiers: Cambridge, United Kingdom, Cambridge University Press, Cambridge Studies in Magnetism, 573 p.
  45. ↵
    1. Dunlop D. J.,
    2. Özdemir Ö.,
    3. Schmidt P. W.
    , 1997, Paleomagnetism and paleothermometry of the Sydney Basin 2. Origin of anomalously high unblocking temperatures: Journal of Geophysical Research, v. 102, n. B12, p. 27,285–27,295, doi:http://dx.doi.org/10.1029/97JB02478
    OpenUrlCrossRefWeb of Science
  46. ↵
    1. Elmore R. D.,
    2. Milavec G. J.,
    3. Imbus S. W.,
    4. Engel M. H.
    , 1989, The Precambrian Nonesuch Formation of the North American mid-continent rift, sedimentology and organic geochemical aspects of lacustrine deposition: Precambrian Research, v. 43, n. 3, p. 191–213, doi:http://dx.doi.org/10.1016/0301-9268(89)90056-9
    OpenUrlCrossRefGeoRefWeb of Science
  47. ↵
    1. Elmore R. D.,
    2. Kelley J.,
    3. Evans M.,
    4. Lewchuk M. T.
    , 2001, Remagnetization and orogenic fluids: testing the hypothesis in the central Appalachians: Geophysical Journal International, v. 144, n. 3, p. 568–576, doi:http://dx.doi.org/10.1046/j.0956-540X.2000.01349.x
    OpenUrlCrossRefGeoRefWeb of Science
  48. ↵
    1. Elmore R. D.,
    2. Foucher J. L.-E.,
    3. Evans M.,
    4. Lewchuk M.
    , 2006, Remagnetization of the Tonoloway Formation and the Helderberg Group in the Central Appalachians: testing the origin of syntilting magnetizations: Geophysical Journal International, v. 166, n. 3, p. 1062–1076, doi:http://dx.doi.org/10.1111/j.1365-246X.2006.02875.x
    OpenUrlCrossRefGeoRefWeb of Science
    1. Ernst R. E.,
    2. Buchan K. L.
    , 1993, Paleomagnetism of the Abitibi dyke swarm, southern Superior Province, and implications for the Logan Loop: Canadian Journal of Earth Science, v. 30, n. 9, p. 1886–1897, doi:http://dx.doi.org/10.1139/e93-167
    OpenUrlAbstract
  49. ↵
    1. Evans D. A. D.
    , 2003, True polar wander and supercontinents: Tectonophysics, v. 362, n. 1–4, p. 303–320, doi:http://dx.doi.org/10.1016/S0040-1951(02)000642-X
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Murphy J. B.,
    2. Keppie J. D.,
    3. Hynes A. J.
    1. Evans D. A. D.
    , 2009, The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction, in Murphy J. B., Keppie J. D., Hynes A. J., edsitors, Ancient Orogens and Modern Analogues: Geological Society, London, Special Publications, v. 327, p. 371–404, doi:http://dx.doi.org/10.1144/SP327.16
    OpenUrlCrossRef
  51. ↵
    1. Evans D. A. D.,
    2. Mitchell R. N.
    , 2011, Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna: Geology, v. 39, n. 5, p. 443–446, doi:http://dx.doi.org/10.1130/G31654.1
    OpenUrlAbstract/FREE Full Text
    1. Evans D. A. D.,
    2. Li Z. X.,
    3. Kirschvink J. L.,
    4. Wingate M.
    , 2000, A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia: Precambrian Research, v. 100, n. 1–3, p. 313–334, doi:http://dx.doi.org/10.1016/S0301-9268(99)00079-0
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Fike D. A.,
    2. Grotzinger J. P.,
    3. Pratt L. M.,
    4. Summon R. E.
    , 2006, Oxidation of the Ediacaran ocean: Nature, v. 444, p. 744–747, doi:http://dx.doi.org/10.1038/nature05345
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  53. ↵
    1. Fillion G.,
    2. Rochette P.
    , 1988, The low temperature transition in monoclinic pyrrhotite: Journal de Physique, v. C8, p. 907–908.
    OpenUrl
  54. ↵
    1. Fioretti A. M.,
    2. Black L. P.,
    3. Foden J.,
    4. Visonà D.
    , 2005, Grenville-age magmatism at the South Tasman Rise (Australia): A new piercing point for the reconstruction of Rodinia: Geology, v. 33, n. 10, p. 769–772, doi:http://dx.doi.org/10.1130/G21671.1
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Fisher D.
    , 1974, Some more remarks on polar wandering: Journal of Geophysical Research, v. 79, n. 26, p. 4041–4045, doi:http://dx.doi.org/10.1029/JB079i026p04041
    OpenUrlGeoRef
  56. ↵
    1. Fisher R.
    , 1953, Dispersion on a sphere: Proceedings of the Royal Society of London, Series A, v. 217, n. 1130, p. 295–305, doi:http://www.jstor.org/stable/99186
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. Gold T.
    , 1955, Instability of the Earth's axis of rotation: Nature, v. 175, p. 526–529, doi:http://dx.doi.org/10.1038/175526a0
    OpenUrlCrossRefGeoRefWeb of Science
    1. Goleby B. R.
    , 1980, Early Palaeozoic palaeomagnetism in south east Australia: Journal of Geomagnetism and Geoelectricity, v. 32, p. 11–21, doi:http://dx.doi.org/10.5636/jgg.32.Supplement3_SIII11
    OpenUrlWeb of Science
  58. ↵
    1. Goodge J. W.,
    2. Fanning C. M.
    , 2010, Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene-Pleistocene glaciomarine sediment and Beacon Supergroup sandstones, Antarctica: Geological Society of America Bulletin, v. 122, n. 7–8, p. 1135–1159, doi:http://dx.doi.org/10.1130/B30079.1
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Goodge J. W.,
    2. Vervoort J. D.,
    3. Fanning C. M.,
    4. Brecke D. M.,
    5. Farmer G. L.,
    6. Williams I. S.,
    7. Myrow P. M.,
    8. DePaolo D. J.
    , 2008, A positive test of east Antarctica–Laurentia juxtaposition within the Rodinia supercontinent: Science, v. 321, n. 5886, p. 235–240, doi:http://dx.doi.org/10.1126/science.1159189
    OpenUrlAbstract/FREE Full Text
    1. Gregory L. C.,
    2. Meert J. G.,
    3. Bingen B.,
    4. Pandit M. K.,
    5. Torsvik T. H.
    , 2009, Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: Implications for the configuration of Rodinia and the assembly of Gondwana: Precambrian Research, v. 170, n. 1–2, p. 13–26, doi:http://dx.doi.org/10.1016/j.precamres.2008.11.004
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Haines P. W.,
    2. Hand M.,
    3. Sandiford M.
    , 2001, Palaeozoic synorogenic sedimentation in central and northern Australia: a review of distribution and timing with implications for the evolution of intracontinental orogens: Australian Journal of Earth Sciences, v. 48, n. 6, p. 911–928, doi:http://dx.doi.org/10.1046/j.1440-0952.2001.00909.x
    OpenUrlCrossRefGeoRefWeb of Science
    1. Halls H. C.
    , 1974, A paleomagnetic reversal in the Osler Volcanic Group, northern Lake Superior: Canadian Journal of Earth Science, v. 11, n. 9, p. 1200–1207, doi:http://dx.doi.org/10.1139/e74-113
    OpenUrlAbstract
  61. ↵
    1. Xiao S.,
    2. Kaufman A. J.
    1. Halverson G. P.
    , 2006, A Neoproterozoic Chronology, in Xiao S., Kaufman A. J., editors, Neoproterozoic Geobiology and Paleobiology, Topics in Geobiology: Dordrecht, The Netherlands, Springer, v. 27, p. 231–271.
    OpenUrlCrossRef
  62. ↵
    1. Halverson G. P.,
    2. Hoffman P. F.,
    3. Schrag D. P.,
    4. Maloof A. C.,
    5. Rice A. H. N.
    , 2005, Toward a Neoproterozoic composite carbon-isotope record: Geological Society of America Bulletin, v. 117, n. 9–10, p. 1181–1207, doi:http://dx.doi.org/10.1130/B25630.1
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Halverson G. P.,
    2. Maloof A. C.,
    3. Schrag D. P.,
    4. Dudas F. O.,
    5. Hurtgen M.
    , 2007, Stratigraphy and geochemistry of a ca 800 Ma negative carbon isotope interval in northeastern Svalbard: Chemical Geology, v. 237, n. 1–2, p. 5–27, doi:http://dx.doi.org/10.1016/j.chemgeo.2006.06.013
    OpenUrlCrossRefGeoRefWeb of Science
  64. ↵
    1. Hand M.,
    2. Sandiford M.
    , 1999, Intraplate deformation in central Australia, the link between subsidence and fault reactivation: Tectonophysics, v. 305, n. 1–3, p. 121–140, doi:http://dx.doi.org/10.1016/S0040-1951(99)00009-8
    OpenUrlCrossRefGeoRefWeb of Science
    1. Harlan S. S.,
    2. Geissman J. W.,
    3. Snee L. W.
    , 2008, Paleomagnetism of Proterozoic mafic dikes from the Tobacco Root Mountains, southwest Montana: Precambrian Research, v. 163, n. 3–4, p. 239–264, doi:http://dx.doi.org/10.1016/j.precamres.2007.12.002
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Heine C.,
    2. Dietmar Müller R.,
    3. Steinberger B.,
    4. Torsvik T. H.
    , 2008, Subsidence in intracontinental basins due to dynamic topography: Physics of the Earth and Planetary Interiors, v. 171, n. 1–4, p. 252–264, doi:http://dx.doi.org/10.1016/j.pepi.2008.05.008
    OpenUrlCrossRefGeoRefWeb of Science
  66. ↵
    1. Henry G. S.,
    2. Mauk F. J.,
    3. Van der Voo R.
    , 1977, Paleomagnetism of the upper Keweenawan sediments: The Nonesuch Shale and Freda Sandstone: Canadian Journal of Earth Science, v. 14, n. 5, p. 1128–1138, doi:http://dx.doi.org/10.1139/e77-103
    OpenUrlAbstract
  67. ↵
    1. Hilgenfeldt K.
    , 2000, Diagenetic dissolution of biogenic magnetite in surface sediments of the Benguela upwelling system: International Journal Of Earth Sciences, v. 88, n. 4, p. 630–640, doi:http://dx.doi.org/10.1007/s005310050293
    OpenUrlCrossRefGeoRefWeb of Science
  68. ↵
    1. Grotzinger J.,
    2. James N.
    1. Hill A. C.,
    2. Arouri K.,
    3. Gorjan P.,
    4. Walter M. R.
    , 2000, Geochemistry of marine and nonmarine environments of a Neoproterozoic cratonic carbonate/evaporite: the Bitter Springs Formation, Central Australia, in Grotzinger J., James N., editors, Carbonate Sedimentation and Diagenesis in an Evolving Precambrian World: SEPM Special Publications, v. 67, p. 327–344, doi:http://dx.doi.org/10.2110/pec.00.67.0327
    OpenUrlCrossRef
    1. Hnat J. S.,
    2. van der Pluijm B. A.,
    3. Van der Voo R.
    , 2006, Primary curvature in the Mid-Continent Rift: Paleomagnetism of the Portage Lake Volcanics (northern Michigan, USA): Tectonophysics, v. 425, n. 1–4, p. 71–82, doi:http://dx.doi.org/10.1016/j.tecto.2006.07.006
    OpenUrlCrossRefGeoRefWeb of Science
  69. ↵
    1. Hoffman P. F.
    , 1991, Did the breakout of Laurentia turn Gondwana inside out?: Science, v. 252, n. 5011, p. 1409–1412, doi:http://dx.doi.org/10.1126/science.252.5011.1409
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Hoffman P. F.
    , 1999, The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth: Journal of African Earth Sciences, v. 28, n. 1, p. 17–33, doi:http://dx.doi.org/10.1016/S0899-5362(99)00018-4
    OpenUrlCrossRefGeoRef
  71. ↵
    1. Hoffman P. F.,
    2. Kaufman A. J.,
    3. Halverson G. P.,
    4. Schrag D. P.
    , 1998, A Neoproterozoic snowball Earth: Science, v. 281, n. 5381, p. 1342–1346, doi:http://dx.doi.org/10.1126/science.281.5381.1342
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. Hoffmann K. H.,
    2. Condon D. J.,
    3. Bowring S. A.,
    4. Crowley J. L.
    , 2004, U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation: Geology, v. 32, n. 9, p. 817–820, doi:http://dx.doi.org/10.1130/G20519.1
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Housen B. A.,
    2. Moskowitz B. M.
    , 2006, Depth distribution of magnetofossils in near-surface sediments from the Blake/Bahama Outer Ridge, western North Atlantic Ocean, determined by low-temperature magnetism: Journal of Geophysical Research, v. 111, doi:http://dx.doi.org/10.1029/2005JG000068
    OpenUrlCrossRef
  74. ↵
    1. Hutton L. J.,
    2. Withnall I. W.,
    3. Rienks I. P.,
    4. Bultitude R. J.,
    5. Hayward M. A.,
    6. von Gneilinski F. E.,
    7. Fordham B. G.,
    8. Simpson G. A.
    , 1999, A preliminary Carboniferous to Permian magmatic framework for the Auburn-Connors Arches, Central Queensland: Armidale, New South Wales, Australia, Division of Earth Sciences, University of New England, New England Orogen 1999 Conference Proceedings, p. 223–232.
  75. ↵
    1. Finlay C. C.,
    2. Maus S.,
    3. Beggan C. D.,
    4. Bondar T. N.,
    5. Chambodut A.,
    6. Chernova T. A.,
    7. Chulliat A.,
    8. Golovkov V. P.,
    9. Hamilton B.,
    10. Hamoudi M.,
    11. Holme R.,
    12. Hulot G.,
    13. Kuang W.,
    14. Langlais B.,
    15. Lesur V.,
    16. Lowes F. J.,
    17. Lühr H.,
    18. Macmillan S.,
    19. Mandea M.,
    20. McLean S.,
    21. Manoj C.,
    22. Menvielle M.,
    23. Michaelis I.,
    24. Olsen N.,
    25. Rauberg J.,
    26. Rother M.,
    27. Sabaka T. J.,
    28. Tangborn A.,
    29. Tøffner-Clausen L.,
    30. Thébault E.,
    31. Thomson A. W. P.,
    32. Wardinski I.,
    33. Wei Z.,
    34. Zvereva T. I.
    IAGA-Working-Group, Finlay C. C., Maus S., Beggan C. D., Bondar T. N., Chambodut A., Chernova T. A., Chulliat A., Golovkov V. P., Hamilton B., Hamoudi M., Holme R., Hulot G., Kuang W., Langlais B., Lesur V., Lowes F. J., Lühr H., Macmillan S., Mandea M., McLean S., Manoj C., Menvielle M., Michaelis I., Olsen N., Rauberg J., Rother M., Sabaka T. J., Tangborn A., Tøffner-Clausen L., Thébault E., Thomson A. W. P., Wardinski I., Wei Z., Zvereva T. I., 2010, International Geomagnetic Reference Field: the eleventh generation: Geophysical Journal International, v. 183, n. 3, p. 1216–1230, doi:http://dx.doi.org/10.1111/j.1365-246X.2010.04804.x
    OpenUrlCrossRefGeoRefWeb of Science
    1. Idnurm M.,
    2. Giddings J. W.
    , 1988, Australian Precambrian polar wander: a review: Precambrian Research, v. 40–41, p. 61–88, doi:http://dx.doi.org/10.1016/0301-9268(88)90061-7
    OpenUrl
  76. ↵
    1. Jackson M.
    , 1990, Diagenetic sources of stable remanence in remagnetized Paleozoic cratonic carbonates: a rock magnetic study: Journal of Geophysical Research, v. 95, n. B3, p. 2753–2761, doi:http://dx.doi.org/10.1029/JB095iB03p02753
    OpenUrlCrossRefGeoRefWeb of Science
  77. ↵
    1. Jackson M.,
    2. McCabe C.,
    3. Ballard M. M.,
    4. Van der Voo R.
    , 1988, Magnetite authigenesis and diagenetic paleotemperatures across the northern Appalachian basin: Geology, v. 16, n. 7, p. 592–595, doi:http://dx.doi.org/10.1130/0091-7613(1988)016〈0592:MAADPA〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. Elmore R.
    1. Jackson M.,
    2. Swanson-Hysell N. L.
    , 2012, Rock magnetism of remagnetized carbonate rocks: Another look, in Elmore R., editor, Remagnetization and Chemical Alteration of Sedimentary Rocks: Geological Society London, Special Publications, v. 371, doi:http://dx.doi.org/10.1144/SP371.3
    OpenUrlCrossRef
  79. ↵
    1. Jackson M.,
    2. Sun W.-W.,
    3. Craddock J. P.
    , 1992, The rock magnetic fingerprint of chemical remagnetization in midcontinental Paleozoic carbonates: Geophysical Research Letters, v. 19, n. 8, p. 781–784, doi:http://dx.doi.org/10.1029/92GL00832
    OpenUrlGeoRefWeb of Science
  80. ↵
    1. Jones C.
    , 2002, User-driven integrated software lives: “PaleoMag” paleomagnetics analysis on the Macintosh: Computers and Geosciences, v. 28, n. 10, p. 1145–1151, doi:http://dx.doi.org/10.1016/S0098-3004(02)00032-8
    OpenUrlCrossRefWeb of Science
  81. ↵
    1. Karlstrom K. E.,
    2. Ahäll K.-I.,
    3. Harlan S. S.,
    4. Williams M. L.,
    5. McLelland J.,
    6. Geissman J. W.
    , 2001, Long-lived (1.8-1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia: Precambrian Research, v. 111, n. 1–4, p. 5–30, doi:http://dx.doi.org/10.1016/S0301-9268(01)00154-1
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    1. Karlstrom K. E.,
    2. Harlan S. S.,
    3. Williams M. L.,
    4. McLelland J.,
    5. Geissman J. W.,
    6. Ahäll K.-I.
    , 1999, Refining Rodinia: Geologic evidence for the Australia–Western US connection in the Proterozoic: GSA Today, v. 9, n. 10, p. 1–7.
    OpenUrlGeoRef
  83. ↵
    1. Katz B.,
    2. Elmore R. D.,
    3. Cogoini M.,
    4. Ferry S.
    , 1998, Widespread chemical remagnetization: Orogenic fluids or burial diagenesis of clays?: Geology, v. 26, n. 7, p. 603–606, doi:http://dx.doi.org/10.1130/0091-7613(1998)026〈0603:WCROFO〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  84. ↵
    1. Katz B.,
    2. Elmore R. D.,
    3. Cogoini M.,
    4. Engel M. H.,
    5. Ferry S.
    , 2000, Associations between burial diagenesis of smectite, chemical remagnetization, and magnetite authigenesis in the Vocontian trough, SE France: Journal of Geophysical Research, v. 105, n. B1, p. 851–868, doi:http://dx.doi.org/10.1029/1999JB900309
    OpenUrlCrossRefGeoRefWeb of Science
  85. ↵
    1. Kendall B.,
    2. Creaser R. A.,
    3. Selby D.
    , 2006, Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation: Geology, v. 34, n. 9, p. 729–732, doi:http://dx.doi.org/10.1130/G22775.1
    OpenUrlAbstract/FREE Full Text
  86. ↵
    1. Kirschvink J.
    , 1978, The Precambrian-Cambrian boundary problem: paleomagnetic directions from the Amadeus Basin, Central Australia: Earth and Planetary Science Letters, v. 40, n. 1, p. 91–100, doi:http://dx.doi.org/10.1016/0012-821X(78)90077-8
    OpenUrlCrossRefGeoRefWeb of Science
  87. ↵
    1. Kirschvink J.
    , 1980, The least-squares line and plane and the analysis of paleomagnetic data: Geophysical Journal of the Royal Astronomical Society, v. 62, n. 3, p. 699–718, doi:http://dx.doi.org/10.1111/j.1365-246X.1980.tb02601.x
    OpenUrlCrossRefGeoRef
  88. ↵
    1. Schopf J. W.,
    2. Klein C.,
    3. Des Marais D.
    1. Kirschvink J.
    , 1992a, Late Proterozoic low-latitude glaciation: The snowball earth, in Schopf J. W., Klein C., Des Marais D., editors, The Proterozoic Biosphere: A Multidisciplinary Study: Cambridge, Cambridge University Press, p. 51–52.
  89. ↵
    1. Schopf J.,
    2. Klein C.,
    3. Des Marais D.
    1. Kirschvink J.
    , 1992b, A paleogeographic model for Vendian and Cambrian time, in Schopf J., Klein C., Des Marais D., editors, The Proterozoic Biosphere: A Multidisciplinary Study: Cambridge, Cambridge University Press, p. 569–581.
  90. ↵
    1. Kirschvink J. L.,
    2. Ripperdan R. L.,
    3. Evans D. A.
    , 1997, Evidence for a large-scale reorganization of Early Cambrian continental masses by inertial interchange true polar wander: Science, v. 277, n. 5325, p. 541–545, doi:http://dx.doi.org/10.1126/science.277.5325.541
    OpenUrlAbstract/FREE Full Text
  91. ↵
    1. Kirschvink J. L.,
    2. Kopp R.,
    3. Raub T.,
    4. Baumgartner J.,
    5. Holt J.
    , 2008, Rapid, precise, and high-sensitivity acquisition of paleomagnetic and rock-magnetic data: Development of a low-noise automatic sample changing system for superconducting rock magnetometers: Geochemistry, Geophysics, and Geosystems, v. 9, doi:doi:10.1029/2007GC001856
    OpenUrlCrossRef
    1. Klootwijk C. T.
    , 1980, Early Palaeozoic palaeomagnetism in Australia I. Cambrian results from the Flinders Ranges, South Australia II. Late Early Cambrian results from Kangaroo Island, South Australia III. Middle to early-Late Cambrian results from the Amadeus Basin, Northern Territory: Tectonophysics, v. 64, n. 3–4, p. 249–332, doi:http://dx.doi.org/10.1016/0040-1951(80)90100-6
    OpenUrlCrossRefGeoRefWeb of Science
  92. ↵
    1. Kopp R. E.
    , ms, 2007, The identification and interpretation of microbial biogeomagnetism: Pasadena, California, California Institute of Technology, Ph.D. thesis, 190 p.
  93. ↵
    1. Kopp R. E.,
    2. Kirschvink J. L.
    , 2008, The identification and biogeochemical interpretation of fossil magnetotactic bacteria: Earth-Science Reviews, v. 86, n. 1–4, p. 42–61, doi:http://dx.doi.org/10.1016/j.earscirev.2007.08.001
    OpenUrlGeoRef
  94. ↵
    1. Korsch R. J.,
    2. Lindsay J. F.
    , 1989, Relationships between deformation and basin evolution in the intracratonic Amadeus Basin, central Australia: Tectonophysics, v. 158, n. 1–4, p. 5–22, doi:http://dx.doi.org/10.1016/0040-1951(89)90312-0
    OpenUrlCrossRefGeoRefWeb of Science
  95. ↵
    1. Kruiver P. P.,
    2. Dekkers M. J.,
    3. Heslop D.
    , 2001, Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation: Earth and Planetary Science Letters, v. 189, n. 3–4, p. 269–276, doi:http://dx.doi.org/10.1016/S0012-821X(01)00367-3
    OpenUrlCrossRefGeoRefWeb of Science
  96. ↵
    1. Lewis J. P.,
    2. Eby M.,
    3. Weaver A. J.,
    4. Johnston S. T.,
    5. Jacob R. L.
    , 2004, Global glaciation in the Neoproterozoic: Reconciling previous modelling results: Geophysical Research Letters, v. 31, L08201, doi:http://dx.doi.org/10.1029/2004GL019725
    OpenUrlCrossRef
  97. ↵
    1. Li Y.-L.,
    2. Vali H.,
    3. Sears S. K.,
    4. Yang J.,
    5. Deng B.,
    6. Zhang C. L.
    , 2004a, Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium: Geochimica et Cosmochimica Acta, v. 68, n. 15, p. 3251–3260, doi:http://dx.doi.org/10.1016/j.gca.2004.03.004
    OpenUrlCrossRefGeoRefWeb of Science
  98. ↵
    1. Li Z. X.
    , 2000, New paleomagnetic results from the “cap dolomite” of the Neoproterozoic Walsh Tillite, northwestern Australia: Precambrian Research, v. 100, n. 1–3, p. 359–370, doi:http://dx.doi.org/10.1016/S0301-9268(99)00081-9
    OpenUrlCrossRefGeoRefWeb of Science
  99. ↵
    1. Li Z. X.,
    2. Evans D. A. D.
    , 2011, Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia: Geology, v. 39, n. 1, p. 39–42, doi:http://dx.doi.org/10.1130/G31461.1
    OpenUrlAbstract/FREE Full Text
  100. ↵
    1. Li Z. X.,
    2. Powell C. M.
    , 2001, An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic: Earth-Science Reviews, v. 53, n. 3–4, p. 237–277, doi:http://dx.doi.org/10.1016/S0012-8252(00)00021-0
    OpenUrlCrossRefGeoRef
    1. Li Z. X.,
    2. Schmidt P. W.,
    3. Embleton B. J. J.
    , 1988, Paleomagnetism of the Hervey Group, Central New South Wales and its tectonic implications: Tectonics, v. 7, n. 3, p. 351–367, doi:http://dx.doi.org/10.1029/TC007i003p00351
    OpenUrlGeoRefWeb of Science
  101. ↵
    1. Li Z. X.,
    2. Powell C. M.,
    3. Schmidt P. W.
    , 1989, Syn-deformational remanent magnetization of the Mount Eclipse Sandstone, central Australia: Geophysical Journal International, v. 99, n. 1, p. 205–222, doi:http://dx.doi.org/10.1111/j.1365-246X.1989.tb02025.x
    OpenUrlCrossRefWeb of Science
  102. ↵
    1. Korsch R. J.,
    2. Kennard J. M.
    1. Li Z. X.,
    2. Powell C. McA.,
    3. Embleton B. J. J.,
    4. Schmidt P. W.
    , 1991, New palaeomagnetic results from the Amadeus Basin and their implications for stratigraphy and tectonics, in Korsch R. J., Kennard J. M., editors, Geological and Geophysical Studies in the Amadeus Basin, Central Australia: Bureau of Mineral Resources, v. 236, p. 349–360.
    OpenUrl
  103. ↵
    1. Li Z. X.,
    2. Zhang L.,
    3. Powell C. McA.
    , 1995, South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia?: Geology, v. 23, n. 5, p. 407–410, doi:http://dx.doi.org/10.1130/0091-7613(1995)023〈0407:SCIRPO〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  104. ↵
    1. Li Z. X.,
    2. Evans D. A. D.,
    3. Zhang S.
    , 2004b, A 90° spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation: Earth and Planetary Science Letters, v. 220, n. 3–4, p. 409–421, doi:http://dx.doi.org/10.1016/S0012-821X(04)00064-0
    OpenUrlCrossRefGeoRefWeb of Science
  105. ↵
    1. Li Z. X.,
    2. Bogdanova S. V.,
    3. Collins A. S.,
    4. Davidson A.,
    5. De Waele B.,
    6. Ernst R. E.,
    7. Fitzsimons I. C. W.,
    8. Fuck R. A.,
    9. Gladkochub D. P.,
    10. Jacobs J.,
    11. Karlstrom K. E.,
    12. Lu S.,
    13. Natapov L. M.,
    14. Pease V.,
    15. Pisarevsky S. A.,
    16. Thrane K.,
    17. Vernikovsky V.
    , 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, v. 160, n. 1–2, p. 179–210, doi:http://dx.doi.org/10.1016/j.precamres.2007.04.021
    OpenUrlCrossRefGeoRefWeb of Science
  106. ↵
    1. Lindsay J. F.
    , 1987, Upper Proterozoic evaporites in the Amadeus basin, central Australia, and their role in basin tectonics: Geological Society of America Bulletin, v. 99, n. 6, p. 852–865, doi:http://dx.doi.org/10.1130/0016-7606(1987)99〈852:UPEITA〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  107. ↵
    1. Lindsay J. F.
    , 1999, Heavitree Quartzite, a Neoproterozoic (ca 800-760 Ma), high-energy, tidally influenced, ramp association, Amadeus Basin, central Australia: Australian Journal of Earth Sciences, v. 46, n. 1, p. 127–139, doi:http://dx.doi.org/10.1046/j.1440-0952.1999.00693.x
    OpenUrlCrossRefGeoRefWeb of Science
  108. ↵
    1. Lindsay J. F.
    , 2002, Supersequences, superbasins, supercontinents—evidence from the Neoproterozoic–Early Palaeozoic basins of central Australia: Basin Research, v. 14, n. 2, p. 207–223, doi:http://dx.doi.org/10.1046/j.1365-2117.2002.00170.x
    OpenUrlCrossRefGeoRefWeb of Science
  109. ↵
    1. Lindsay J. F.,
    2. Korsch R. J.
    , 1989, Interplay of tectonics and sea-level changes in basin evolution: and example from the intacratonic Amadeus Basin, central Australia: Basin Research, v. 2, n. 1, p. 3–25, doi:http://dx.doi.org/10.1111/j.1365-2117.1989.tb00023.x
    OpenUrlGeoRef
  110. ↵
    1. Liu Q.,
    2. Yu Y.,
    3. Torrent J.,
    4. Roberts A. P.,
    5. Pan Y.,
    6. Zhu R.
    , 2006, Characteristic low-temperature magnetic properties of aluminous goethite [α-(Fe, Al)OOH] explained: Journal of Geophysical Research, v. 111, B12S34, doi:http://dx.doi.org/10.1029/2006JB004560
    OpenUrlCrossRef
  111. ↵
    1. Maboko M. A. H.,
    2. McDougall I.,
    3. Zeitler P. K.,
    4. Williams I. S.
    , 1992, Geochronological evidence for ∼530–550 Ma juxtaposition of two Proterozoic metamorphic terranes in the Musgrave Ranges, Central Australia: Australian Journal of Earth Sciences, v. 39, n. 4, p. 457–471, doi:http://dx.doi.org/10.1080/08120099208728038
    OpenUrlGeoRefWeb of Science
  112. ↵
    1. Macdonald F. A.,
    2. Schmitz M. D.,
    3. Crowley J. L.,
    4. Roots C. F.,
    5. Jones D. S.,
    6. Maloof A. C.,
    7. Strauss J. V.,
    8. Cohen P. A.,
    9. Johnston D. T.,
    10. Schrag D. P.
    , 2010, Calibrating the Cryogenian: Science, v. 327, n. 5970, p. 1241–1243, doi:http://dx.doi.org/10.1126/science.1183325
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Maher B. A.,
    2. Karloukovski V. V.,
    3. Mutch T. J.
    , 2004, High-field remanence properties of synthetic and natural submicrometre haematites and goethites: significance for environmental contexts: Earth and Planetary Science Letters, v. 226, n. 34, p. 491–505, doi:http://dx.doi.org/10.1016/j.epsl.2004.05.042
    OpenUrlCrossRefGeoRefWeb of Science
  114. ↵
    1. Maidment D. W.,
    2. Williams I. S.,
    3. Hand M.
    , 2007, Testing long-term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia: Basin Research, v. 19, n. 3, p. 335–360, doi:http://dx.doi.org/10.1111/j.1365-2117.2007.00326.x
    OpenUrlCrossRefGeoRefWeb of Science
  115. ↵
    1. Maloof A. C.,
    2. Halverson G. P.,
    3. Kirschvink J. L.,
    4. Schrag D. P.,
    5. Weiss B. P.,
    6. Hoffman P. F.
    , 2006, Combined paleomagnetic, isotopic and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway: Geological Society of America Bulletin, v. 118, n. 9–10, p. 1099–1124, doi:http://dx.doi.org/10.1130/B25892.1
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. Maloof A. C.,
    2. Kopp R. E.,
    3. Grotzinger J. P.,
    4. Fike D. A.,
    5. Bosak T.,
    6. Vali H.,
    7. Poussart P. M.,
    8. Weiss B. P.,
    9. Kirschvink J. L.
    , 2007, Sedimentary iron cycling and the origin and preservation of magnetization in platform carbonate muds, Andros Island, Bahamas: Earth and Planetary Science Letters, v. 259, n. 3–4, p. 581–598, doi:http://dx.doi.org/10.1016/j.epsl.2007.05.021
    OpenUrlCrossRefGeoRefWeb of Science
  117. ↵
    1. Marshall H. G.,
    2. Walker J. C. G.,
    3. Kuhn W. R.
    , 1988, Long-term climate change and the geochemical cycle of carbon: Journal of Geophysical Research, v. 93, n. D1, p. 791–801, doi:http://dx.doi.org/10.1029/JD093iD01p00791
    OpenUrlCrossRefGeoRef
  118. ↵
    1. Matsuyama I.,
    2. Mitrovica J. X.,
    3. Daradich A.,
    4. Gomez N.
    , 2010, The rotational stability of a triaxial ice-age earth: Journal of Geophysical Research, v. 115, B05401, doi:http://dx.doi.org/10.1029/2009JB006564
    OpenUrlCrossRef
  119. ↵
    1. McCabe C.,
    2. Channell J. E. T.
    , 1994, Late Paleozoic remagnetization in limestones of the Craven Basin (northern England) and the rock magnetic fingerprint of remagnetized sedimentary carbonates: Journal of Geophysical Research, v. 99, n. B3, p. 4603–4612, doi:http://dx.doi.org/10.1029/93JB02802
    OpenUrlCrossRefGeoRef
  120. ↵
    1. McCabe C.,
    2. Elmore R. D.
    , 1989, The occurrence and origin of Late Paleozoic remagnetization in the sedimentary rocks of North America: Reviews of Geophysics, v. 27, n. 4, p. 471–494, doi:http://dx.doi.org/10.1029/RG027i004p00471
    OpenUrlCrossRefGeoRefWeb of Science
    1. McCabe C.,
    2. Van der Voo R.
    , 1983, Paleomagnetic results from the upper Keweenawan Chequamegon Sandstone: implications for red bed diagenesis and Late Precambrian apparent polar wander of North America: Canadian Journal of Earth Science, v. 20, n. 1, p. 105–112, doi:http://dx.doi.org/10.1139/e83-010
    OpenUrlAbstract
  121. ↵
    1. McCabe C.,
    2. Van der Voo R.,
    3. Peacor D. R.,
    4. Scotese C. R.,
    5. Freeman R.
    , 1983, Diagenetic magnetite carries ancient yet secondary remanence in some Paleozoic sedimentary carbonates: Geology, v. 11, n. 4, p. 221–223, doi:http://dx.doi.org/10.1130/0091-7613(1983)11〈221:DMCAYS〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. McElhinny M. W.
    , 1964, Statistical significance of the fold test in paleomagnetism: Geophysical Journal of the Royal Astronomical Society, v. 8, n. 3, p. 338–340, doi:http://dx.doi.org/10.1111/j.1365-246X.1964.tb06300.x
    OpenUrlCrossRef
  123. ↵
    1. McElhinny M. W.,
    2. Powell C. McA.,
    3. Pisarevsky S. A.
    , 2003, Paleozoic terranes of eastern Australia and the drift history of Gondwana: Tectonophysics, v. 362, n. 1–4, p. 41–65, doi:http://dx.doi.org/10.1016/S0040-1951(02)00630-3
    OpenUrlCrossRefGeoRefWeb of Science
  124. ↵
    1. McFadden P. L.,
    2. McElhinny M. W.
    , 1988, The combined analysis of remagnetization circles and direct observations in paleomagnetism: Earth and Planetary Science Letters, v. 87, n. 1–2, p. 161–172, doi:http://dx.doi.org/10.1016/0012-821X(88)90072-6
    OpenUrlCrossRefGeoRefWeb of Science
  125. ↵
    1. McFadden P. L.,
    2. McElhinny M. W.
    , 1990, Classification of the reversal test in palaeomagnetism: Geophysical Journal International, v. 103, n. 3, p. 725–729, doi:http://dx.doi.org/10.1111/j.1365-246X.1990.tb05683.x
    OpenUrlCrossRefGeoRefWeb of Science
  126. ↵
    1. McLaren S.,
    2. Sandiford M.,
    3. Dunlap W. J.,
    4. Scrimgeour I.,
    5. Close D.,
    6. Edgoose C.
    , 2009, Distribution of Palaeozoic reworking in the Western Arunta Region and northwestern Amadeus Basin from 40Ar/39Ar thermochronology: implications for the evolution of intracratonic basins: Basin Research, v. 21, n. 3, p. 315–334, doi:http://dx.doi.org/10.1111/j.1365-2117.2008.00385.x
    OpenUrlCrossRefGeoRefWeb of Science
  127. ↵
    1. McWilliams M. O.,
    2. Dunlop D. J.
    , 1975, Precambrian paleomagnetism: Magnetizations reset by the Grenville Orogeny: Science, v. 190, n. 4211, p. 269–272, doi:http://dx.doi.org/10.1126/science.190.4211.269
    OpenUrlGeoRefWeb of Science
    1. Meert J. G.,
    2. Van der Voo R.,
    3. Ayub S.
    , 1995, Paleomagnetic investigation of the Neoproterozoic Gagwe lavas and Mbozi complex, Tanzania and the assembly of Gondwana: Precambrian Research, v. 74, n. 4, p. 225–244, doi:http://dx.doi.org/10.1016/0301-9268(95)00012-T
    OpenUrlCrossRefGeoRefWeb of Science
  128. ↵
    1. Ménabréaz L.,
    2. Thouveny N.,
    3. Camoin G.,
    4. Lund S. P.
    , 2010, Paleomagnetic record of the late Pleistocene reef sequence of Tahiti (French Polynesia): A contribution to the chronology of the deposits: Earth and PlanetaryScience Letters, v. 294, n. 1–2, p. 58–68, doi:http://dx.doi.org/10.1016/j.epsl.2010.03.002
    OpenUrlCrossRefWeb of Science
  129. ↵
    1. Miller J. D.,
    2. Kent D. V.
    , 1988, Regional trends in the timing of Alleghenian remagnetization in the Appalachians: Geology, v. 16, n. 7, p. 588–591, doi:http://dx.doi.org/10.1130/0091-7613(1988)016〈0588:RTITTO〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Miller K. C.,
    2. Hargraves R. B.
    , 1994, Paleomagnetism of some Indian kimberlites and lamproites: Precambrian Research, v. 69, n. 1–4, p. 259–267, doi:http://dx.doi.org/10.1016/0301-9268(94)90090-6
    OpenUrlCrossRefGeoRefWeb of Science
  130. ↵
    1. Mitchell R. N.,
    2. Evans D. A. D.,
    3. Kilian T. M.
    , 2010, Rapid early Cambrian rotation of Gondwana: Geology, v. 38, n. 8, p. 755–758, doi:http://dx.doi.org/10.1130/G30910.1
    OpenUrlAbstract/FREE Full Text
  131. ↵
    1. Mitrovica J. X.,
    2. Wahr J.,
    3. Matsuyama I.,
    4. Paulson A.
    , 2005, The rotational stability of an ice-age earth: Geophysical Journal International, v. 161, n. 2, p. 491–506, doi:http://dx.doi.org/10.1111/j.1365-246X.2005.02609.x
    OpenUrlCrossRefWeb of Science
  132. ↵
    1. Montgomery P.,
    2. Hailwood E. A.,
    3. Gale A. S.,
    4. Burnett J. A.
    , 1998, The magnetostratigraphy of Coniacian late Campanian chalk sequences in southern England: Earth And Planetary Science Letters, v. 156, n. 3–4, p. 209–224, doi:http://dx.doi.org/10.1016/S0012-821X(98)00008-9
    OpenUrlCrossRefGeoRefWeb of Science
  133. ↵
    1. Moores E. M.
    , 1991, Southwest U.S.–East Antarctic (SWEAT) connection: A hypothesis: Geology, v. 19, n. 5, p. 425–428, doi:http://dx.doi.org/10.1130/0091-7613(1991)019〈0425:SUSEAS〉2.3.CO;2
    OpenUrlCrossRef
  134. ↵
    1. Morris W. A.,
    2. Roy J. L.
    , 1977, Discovery of the Hadrynian Polar Track and further study of the Grenville problem: Nature, v. 266, p. 689–692, doi:http://dx.doi.org/10.1038/266689a0
    OpenUrlCrossRefWeb of Science
  135. ↵
    1. Mound J. E.,
    2. Mitrovica J. X.
    , 1998, True polar wander as a mechanism for second-order sea-level variations: Science, v. 279, n. 5350, p. 534–537, doi:http://dx.doi.org/10.1126/science.279.5350.534
    OpenUrlAbstract/FREE Full Text
    1. Murthy G.,
    2. Gower C.,
    3. Tubrett M.,
    4. Pätzold R.
    , 1992, Paleomagnetism of Eocambrian Long Range dykes and Double Mer Formation from Labrador, Canada: Canadian Journal of Earth Sciences, v. 29, n. 6, p. 1224–1234, doi:http://dx.doi.org/10.1139/e92-098
    OpenUrlAbstract
  136. ↵
    1. Muttoni G.
    , 1995, “Wasp-waisted” hysteresis loops from a pyrrhotite and magnetite-bearing remagnetized Triassic limestone: Geophysical Research Letters, v. 22, n. 23, p. 3167–3170, doi:http://dx.doi.org/10.1029/95GL03073
    OpenUrlCrossRefGeoRefWeb of Science
  137. ↵
    1. Muxworthy A. R.,
    2. McClelland E.
    , 2000, Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective: Geophysical Journal International, v. 140, n. 1, p. 101–114, doi:http://dx.doi.org/10.1046/j.1365-246x.2000.00999.x
    OpenUrlCrossRefWeb of Science
  138. ↵
    1. Myers J. S.,
    2. Shaw R. D.,
    3. Tyler I. M.
    , 1996, Tectonic evolution of Proterozoic Australia: Tectonics, v. 15, n. 6, p. 1431–1446, doi:http://dx.doi.org/10.1029/96TC02356
    OpenUrlCrossRefGeoRefWeb of Science
  139. ↵
    1. Narbonne G. M.,
    2. Gehling J. G.
    , 2003, Life after snowball: The oldest complex Ediacaran fossils: Geology, v. 31, n. 1, p. 27–30, doi:http://dx.doi.org/10.1130/0091-7613(2003)031〈0027:LASTOC〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  140. ↵
    1. Nicholson S. W.,
    2. Schultz K. J.,
    3. Shirey S. B.,
    4. Green J. C.
    , 1997, Rift-wide correlation of 1.1 Ga Midcontinent rift system basalts: implications for multiple mantle sources during rift development: Canadian Journal of Earth Science, v. 34, n. 4, p. 504–520, doi:http://dx.doi.org/10.1139/e17-041
    OpenUrlAbstract
  141. ↵
    1. Otofuji Y.-i.,
    2. Takemoto K.,
    3. Zaman H.,
    4. Nishimitsu Y.,
    5. Wada Y.
    , 2003, Cenozoic remagnetization of the Paleozoic rocks in the Kitakami massif of northeast Japan, and its tectonic implications: Earth and Planetary Science Letters, v. 210, n. 1–2, p. 203–217, doi:http://dx.doi.org/10.1016/S0012-821X(03)00125-0
    OpenUrlCrossRefGeoRefWeb of Science
  142. ↵
    1. Özdemir O.,
    2. Dunlop D. J.
    , 1996, Thermoremanence and Néel temperature of goethite: Geophysical Research Letters, v. 23, n. 9, p. 921–924, doi:http://dx.doi.org/10.1029/96GL00904
    OpenUrlCrossRefGeoRefWeb of Science
  143. ↵
    1. Palmer H. C.,
    2. Davis D. W.
    , 1987, Paleomagnetism and U-Pb geochronology of volcanic rocks from Michipicoten Island, Lake Superior, Canada: precise calibration of the Keweenawan polar wander track: Precambrian Research, v. 37, n. 2, p. 157–171, doi:http://dx.doi.org/10.1016/0301-9268(87)90077-5
    OpenUrlCrossRefGeoRefWeb of Science
    1. Palmer H. C.,
    2. Merz B. A.,
    3. Hayatsu A.
    , 1977, The Sudbury dikes of the Grenville Front region: paleomagnetism, petrochemistry, and K-Ar age studies: Canadian Journal of Earth Sciences, v. 14, n. 8, p. 1867–1887, doi:http://dx.doi.org/10.1139/e77-158
    OpenUrlAbstract
  144. ↵
    1. Pavlov V.,
    2. Gallet Y.
    , 2010, Variations in geomagnetic reversal frequency during the Earth's middle age: Geochemistry Geophysics Geosystems, v. 11, doi:http://dx.doi.org/10.1029/2009GC002583
    OpenUrlCrossRef
  145. ↵
    1. Yoshida M.,
    2. Windley B. E.,
    3. Dasgupta S.
    1. Pisarevsky S. A.,
    2. Wingate T. D.,
    3. Powell C. M.,
    4. Johnson S.,
    5. Evans D. A. D.
    , 2003a, Models of Rodinia assembly and fragmentation, in Yoshida M., Windley B. E., Dasgupta S., editors, Proterozoic East Gondwana: Supercontinent Assembly and Breakup: The Geological Society, London, Special Publications, v. 206, p. 35–55, doi:http://dx.doi.org/10.1144/GSL.SP.2003.206.01.04
    OpenUrlCrossRef
  146. ↵
    1. Pisarevsky S. A.,
    2. Wingate M. T. D.,
    3. Harris L. B.
    , 2003b, Late Mesoproterozoic (ca 1.2 Ga) palaeomagnetism of the Albany-Fraser orogen: no pre-Rodinia Australia–Laurentia connection: Geophysical Journal International, v. 155, n. 1, p. F6–F11, doi:http://dx.doi.org/10.1046/j.1365-246X.2003.02074.x
    OpenUrlCrossRefWeb of Science
    1. Pisarevsky S. A.,
    2. Wingate M. T. D.,
    3. Stevens M. K.,
    4. Haines P. W.
    , 2007, Palaeomagnetic results from the Lancer 1 stratigraphic drillhole, Officer Basin, Western Australia, and implications for Rodinia reconstructions: Australian Journal of Earth Sciences, v. 54, n. 4, p. 561–572, doi:http://dx.doi.org/10.1080/08120090701188962
    OpenUrlCrossRefGeoRefWeb of Science
  147. ↵
    1. Preiss W. V.
    , 2000, The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction: Precambrian Research, v. 100, n. 1–3, p. 21–63, doi:http://dx.doi.org/10.1016/S0301-9268(99)00068-6
    OpenUrlCrossRefGeoRefWeb of Science
  148. ↵
    1. Preiss W. V.,
    2. Walter M. R.,
    3. Coats R. P.,
    4. Wells A. T.
    , 1978, Lithological correlations of Adelaidean glaciogenic rocks in parts of the Amadeus, Ngalia, and Georgina basins: Bureau of Minearl Resources Journal of Australian Geology and Geophysics, v. 3, p. 45–53.
    OpenUrl
  149. ↵
    1. Raimondo T.,
    2. Collins A. S.,
    3. Hand M.,
    4. Walker-Hallam A.,
    5. Smithies R. H.,
    6. Evins P. M.,
    7. Howard H. M.
    , 2009, Ediacaran intracontinental channel flow: Geology, v. 37, n. 4, p. 291–294, doi:http://dx.doi.org/10.1130/G25452A.1
    OpenUrlAbstract/FREE Full Text
  150. ↵
    1. Raimondo T.,
    2. Collins A. S.,
    3. Hand M.,
    4. Walker-Hallam A.,
    5. Smithies R. H.,
    6. Evins P. M.,
    7. Howard H. M.
    , 2010, The anatomy of a deep intracontinental orogen: Tectonics, v. 29, TC4024, doi:http://dx.doi.org/10.1029/2009TC002504
    OpenUrlCrossRef
  151. ↵
    1. Rainbird R. H.,
    2. Jefferson C. W.,
    3. Young G. M.
    , 1996, The early Neoproterozoic sedimentary Succession B of northwestern Laurentia: Correlations and paleogeographic significance: Geological Society of America Bulletin, v. 108, n. 4, p. 454–470, doi:http://dx.doi.org/10.1130/0016-7606(1996)108〈0454:TENSSB〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  152. ↵
    1. Kono M.
    1. Raub T. D.,
    2. Kirschvink J. L.,
    3. Evans D. A. D.
    , 2007, True polar wander: Linking deep and shallow geodynamics to hydro- and bio-spheric hypotheses, in Kono M., editor, Geomagnetism: Treatise on Geophysics, v. 5, p. 565–589, doi:http://dx.doi.org/10.1016/B978-044452748-6.00099-7
    OpenUrlCrossRef
  153. ↵
    1. Rochette P.,
    2. Fillion G.
    , 1989, Field and temperature behavior of remanence in synthetic goethite: Paleomagnetic implications: Geophysical Research Letters, v. 16, n. 8, p. 851–854, doi:http://dx.doi.org/10.1029/GL016i008p00851
    OpenUrlCrossRefGeoRefWeb of Science
  154. ↵
    1. Rochette P.,
    2. Fillion G.,
    3. Mattéi J.-L.,
    4. Dekkers M. J.
    , 1990, Magnetic transition at 30–34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks: Earth and Planetary Science Letters, v. 98, n. 3–4, p. 319–328, doi:http://dx.doi.org/10.1016/0012-821X(90)90034-U
    OpenUrlCrossRefGeoRefWeb of Science
    1. Roy J. L.,
    2. Robertson W. A.
    , 1978, Paleomagnetism of the Jacobsville Formation and the apparent polar wander path for the interval ∼1100 to ∼670 m.y. for North America: Journal of Geophysical Research, v. 83, n. B3, p. 1289–1304, doi:http://dx.doi.org/10.1029/JB083iB03p01289
    OpenUrlCrossRefGeoRef
  155. ↵
    1. Sandiford M.,
    2. Hand M.
    , 1998, Controls on the locus of intraplate deformation in central Australia: Earth and Planetary Science Letters, v. 162, n. 1–4, p. 97–110, doi:http://dx.doi.org/10.1016/S0012-821X(98)00159-9
    OpenUrlCrossRefGeoRefWeb of Science
  156. ↵
    1. Veevers J. J.
    1. Schmidt P. W.,
    2. Clark D. A.
    , 2000, Paleomagnetism, apparent polar-wander path, and paleolatitude, in Veevers J. J., editor, Billion-Year Earth History of Australia and Neighbours in Gondwanaland: Sydney, Australia, GEMOC Press, p. 12–17.
    1. Schmidt P. W.,
    2. Williams G. E.
    , 1996, Palaeomagnetism of the ejecta-bearing Bunyeroo Formation, late Neoproterozoic Adelaide fold belt, and the age of the Acraman impact: Earth and Planetary Science Letters, v. 144, n. 3–4, p. 347–357, doi:http://dx.doi.org/10.1016/S0012-821X(96)00169-0
    OpenUrlCrossRefGeoRefWeb of Science
    1. Schmidt P. W.,
    2. Embleton B. J. J.,
    3. Cudahy T. J.,
    4. Powell C. McA.
    , 1986, Prefolding and Premegakinking Magnetizations from the Devonian Comerong Volcanics, New South Wales, Australia, and their bearing on the Gondwana Pole Path: Tectonics, v. 5, n. 1, p. 135–150, doi:http://dx.doi.org/10.1029/TC005i001p00135
    OpenUrlGeoRefWeb of Science
    1. Schmidt P. W.,
    2. Embleton B. J. J.,
    3. Palmer H. C.
    , 1987, Pre- and post-folding magnetizations from the early Devonian Snowy River Volcanics and Buchan Caves Limestone, Victoria: Geophysical Journal of the Royal Astronomical Society, v. 91, n. 1, p. 155–170, doi:http://dx.doi.org/10.1111/j.1365-246X.1987.tb05218.x
    OpenUrlCrossRefGeoRef
    1. Schmidt P. W.,
    2. Clark D. A.,
    3. Rajagopalan S.
    , 1993, An historical perspective of the early Palaeozoic APWP of Gondwana: New results from the early Ordovician Black Hill Norite, South Australia: Exploration Geophysics, v. 24, p. 257–262, doi:http://dx.doi.org/10.1071/EG993257
    OpenUrlCrossRef
  157. ↵
    1. Schmidt P. W.,
    2. Williams G. E.,
    3. Camacho A.,
    4. Lee J. K. W.
    , 2006, Assembly of Proterozoic Australia: implications of a revised pole for the ∼1070 Ma Alcurra Dyke Swarm, central Australia: Geophysical Journal International, v. 167, n. 2, p. 626–634, doi:http://dx.doi.org/10.1111/j.1365-246X.2006.03192.x
    OpenUrlCrossRefWeb of Science
    1. Schmidt P. W.,
    2. Williams G. E.,
    3. McWilliams M. O.
    , 2009, Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia: Implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran System: Precambrian Research, v. 174, n. 1–2, p. 35–52, doi:http://dx.doi.org/10.1016/j.precamres.2009.06.002
    OpenUrlCrossRefGeoRefWeb of Science
  158. ↵
    1. Schrag D. P.,
    2. Berner R. A.,
    3. Hoffman P. F.,
    4. Halverson G. P.
    , 2002, On the initiation of a snowball Earth: Geochemistry, Geophysics, and Geosystems, v. 3, 1036, doi:http://dx.doi.org/10.1029/2001GC000219
    OpenUrlCrossRef
  159. ↵
    1. Sears J. W.,
    2. Price R. A.
    , 2000, New look at the Siberian connection: No SWEAT: Geology, v. 28, n. 4, p. 423–426, doi:http://dx.doi.org/10.1130/0091-7613(2000)28〈423:NLATSC〉2.0.CO;2
    OpenUrlAbstract/FREE Full Text
    1. Sohl L. E.,
    2. Christie-Blick N.,
    3. Kent D. V.
    , 1999, Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: implications for the duration of low-latitude glaciation in Neoproterozoic time: Geological Society of America Bulletin, v. 111, n. 8, p. 1120–1139, doi:http://dx.doi.org/10.1130/0016-7606(1999)111〈1120:PPRIMC〉2.3.CO;2
    OpenUrlAbstract/FREE Full Text
  160. ↵
    1. Southgate P. N.
    , 1989, Relationships between cyclicity and stromatolite form in the Late Proterozoic Bitter Springs Formation, Australia: Sedimentology, v. 36, n. 2, p. 323–339, doi:http://dx.doi.org/10.1111/j.1365-3091.1989.tb00610.x
    OpenUrlCrossRefGeoRefWeb of Science
  161. ↵
    1. Srodon J.,
    2. Eberl D. D.
    , 1984, Illite: Reviews in Mineralogy and Geochemistry, v. 13, p. 495–544.
    OpenUrlAbstract
  162. ↵
    1. Steinberger B.,
    2. O'Connell R. J.
    , 1997, Changes of the Earth's rotation axis owing to advection of mantle density heterogeneities: Nature, v. 387, p. 169–173, doi:http://dx.doi.org/10.1038/387169a0
    OpenUrlCrossRefGeoRefWeb of Science
  163. ↵
    1. Steinberger B.,
    2. O'Connell R. J.
    , 1998, Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution: Geophysical Journal International, v. 132, n. 2, p. 412–434, doi:http://dx.doi.org/10.1046/j.1365-246x.1998.00447.x
    OpenUrlCrossRefWeb of Science
  164. ↵
    1. Mitrovica J. X.,
    2. Vermeersen B. L. A.
    1. Steinberger B.,
    2. O'Connell R. J.
    , 2002, The convective mantle flow signal in rates of true polar wander, in Mitrovica J. X., Vermeersen B. L. A., editors, Ice Sheets, Sea Level and the Dynamic Earth: Geodynamics Research Series, v. 29, p. 233–256, doi:http://dx.doi.org/10.1029/029GD15
    OpenUrlCrossRef
  165. ↵
    1. Steinberger B.,
    2. Torsvik T. H.
    , 2008, Absolute plate motions and true polar wander in the absence of hotspot tracks: Nature, v. 452, p. 620–623, doi:http://dx.doi.org/10.1038/nature06824
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  166. ↵
    1. Steinberger B.,
    2. Torsvik T. H.
    , 2010, Toward an explanation for the present and past locations of the poles: Geochemistry Geophysics Geosystems, v. 11, Q06W06, doi:http://dx.doi.org/10.1029/2009GC002889
    OpenUrlCrossRef
  167. ↵
    1. Swanson-Hysell N. L.,
    2. Maloof A. C.,
    3. Weiss B. P.,
    4. Evans D. A. D.
    , 2009, No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts: Nature Geoscience, v. 2, p. 713–717, doi:http://dx.doi.org/10.1038/ngeo622
    OpenUrlCrossRefWeb of Science
  168. ↵
    1. Swanson-Hysell N. L.,
    2. Rose C. V.,
    3. Calmet C. C.,
    4. Halverson G. P.,
    5. Hurtgen M. T.,
    6. Maloof A. C.
    , 2010, Cryogenian glaciation and the onset of carbon-isotope decoupling: Science, v. 328, n. 5978, p. 608–611, doi:http://dx.doi.org/10.1126/science.1184508
    OpenUrlAbstract/FREE Full Text
    1. Tanaka H.,
    2. Idnurm M.
    , 1994, Palaeomagnetism of Proterozoic mafic intrusions and host rocks of the Mount Isa Inlier, Australia: revisited: Precambrian Research, v. 69, n. 1–4, p. 241–258, doi:http://dx.doi.org/10.1016/0301-9268(94)90089-2
    OpenUrlCrossRefGeoRefWeb of Science
  169. ↵
    1. Tarduno J. A.,
    2. Myers M.
    , 1994, A primary magnetization fingerprint from the Cretaceous Laytonville Limestone: Further evidence for rapid oceanic plate velocities: Journal of Geophysical Research, v. 99, n. B11, p. 21,691–21,703, doi:http://dx.doi.org/10.1029/94JB01939
    OpenUrlCrossRefWeb of Science
  170. ↵
    1. Tauxe L.
    , 2010, Essentials of Paleomagnetism: Berkeley, California, University of California Press, 489 p.
    1. Tauxe L.,
    2. Kodama K. P.
    , 2009, Paleosecular variation models for ancient times: Clues from Keweenawan lava flows: Physics of the Earth and Planetary Interiors, v. 177, n. 1–2, p. 31–45, doi:http://dx.doi.org/10.1016/j.pepi.2009.07.006
    OpenUrlCrossRefGeoRefWeb of Science
  171. ↵
    1. Tauxe L.,
    2. Watson G. S.
    , 1994, The fold test: an eigen analysis approach: Earth and Planetary Science Letters, v. 122, n. 3–4, p. 331–341, doi:http://dx.doi.org/10.1016/0012-821X(94)90006-X
    OpenUrlCrossRefGeoRefWeb of Science
  172. ↵
    1. Tauxe L.,
    2. Mullender T. A. T.,
    3. Pick T.
    , 1996, Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis: Journal of Geophysical Research, v. 101, n. B1, p. 571–583, doi:http://dx.doi.org/10.1029/95JB03041
    OpenUrlCrossRefGeoRef
    1. Thrupp G. A.,
    2. Kent D. V.,
    3. Schmidt P. W.,
    4. Powell C. McA.
    , 1991, Palaeomagnetism of red beds of the Late Devonian Worange Point Formation, SE Australia: Geophysical Journal International, v. 104, n. 1, p. 179–202, doi:http://dx.doi.org/10.1111/j.1365-246X.1991.tb02503.x
    OpenUrlGeoRefWeb of Science
  173. ↵
    1. Tohver E.,
    2. Weil A. B.,
    3. Solum J. G.,
    4. Hall C. M.
    , 2008, Direct dating of carbonate remagnetization by 40Ar/39Ar analysis of the smectite-illite transformation: Earth and Planetary Science Letters, v. 274, n. 3–4, p. 524–530, doi:http://dx.doi.org/10.1016/j.epsl.2008.08.002
    OpenUrlCrossRefGeoRefWeb of Science
  174. ↵
    1. Tsai V. C.,
    2. Stevenson D. J/
    , 2007, Theoretical constraints on true polar wander: Journal of Geophysical Research—Solid Earth, v. 112, B05415, doi:http://dx.doi.org/10.1029/2005JB003923
    OpenUrlCrossRef
  175. ↵
    1. Van der Voo R.
    , 1990, The reliability of paleomagnetic data: Tectonophysics, v. 184, n. 1, p. 1–9, doi:http://dx.doi.org/10.1016/0040-1951(90)90116-P
    OpenUrlCrossRefGeoRefWeb of Science
  176. ↵
    1. Vanyo J. P.,
    2. Awramik S. M.
    , 1982, Length of day and obliquity of the ecliptic 850 Ma ago: preliminary results of a stromatolite growth model: Geophysical Research Letters, v. 9, n. 10, p. 1125–1128, doi:http://dx.doi.org/10.1029/GL009i010p01125
    OpenUrlGeoRefWeb of Science
  177. ↵
    1. Vanyo J. P.,
    2. Awramik S. M.
    , 1985, Stromatolites and Earth-Sun-Moon dynamics: Precambrian Research, v. 29, n. 1–3, p. 121–142, doi:http://dx.doi.org/10.1016/0301-9268(85)90064-6
    OpenUrlCrossRefGeoRefWeb of Science
  178. ↵
    1. Veevers J. J.,
    2. Eittreim S. L.
    , 1988, Reconstruction of Antarctica and Australia at breakup (95 ± 5 Ma) and before rifting (160 Ma): Australian Journal of Earth Sciences, v. 35, n. 3, p. 355–362, doi:http://dx.doi.org/10.1080/08120098808729453
    OpenUrlGeoRefWeb of Science
  179. ↵
    1. Verwey E. J. W.
    , 1939, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures: Nature, v. 144, n. 3642, p. 327–328, doi:http://dx.doi.org/10.1038/144327b0
    OpenUrl
    1. Wahyono H.
    , ms, 1992, Palaeomagnetism and anisotropy of magnetic susceptibility of the Bathurst Batholith and its contact aureole: Macquarie Park, Australia, Macquarie University, Master's thesis, 102 p.
  180. ↵
    1. Walker J. C. G.,
    2. Hays P. B.,
    3. Kasting J. F.
    , 1981, A negative feedback mechanism for the long-term stabilization of Earth's surface temperature: Journal of Geophysical Research, v. 86, n. C10, p. 9776–9782, doi:http://dx.doi.org/10.1029/JC086iC10p09776
    OpenUrlCrossRefWeb of Science
  181. ↵
    1. Walter M. R.
    , 1972, Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian: Palaeontological Association, Special Papers in Palaeontology, n. 11, Palaeontological Association, 190 p.
  182. ↵
    1. Walter M. R.,
    2. Veevers J. J.,
    3. Calver C. R.,
    4. Grey K.
    , 1995, Neoproterozoic stratigraphy of the Centralian Superbasin, Australia: Precambrian Research, v. 73, n. 1–4, p. 173–195, doi:http://dx.doi.org/10.1016/0301-9268(94)00077-5
    OpenUrlCrossRefGeoRefWeb of Science
    1. Warnock A. C.,
    2. Kodama K. P.,
    3. Zeitler P. K.
    , 2000, Using thermochronometry and low-temperature demagnetization to accurately date Precambrian paleomagnetic poles: Journal of Geophysical Research, v. 105, n. B8, p. 19,435–19,453, doi:http://dx.doi.org/10.1029/2000JB900114
    OpenUrlCrossRefWeb of Science
  183. ↵
    1. Weaver R.,
    2. Roberts A. P.,
    3. Barker A. J.
    , 2002, A late diagenetic (syn-folding) magnetization carried by pyrrhotite: implications for paleomagnetic studies from magnetic iron sulphide-bearing sediments: Earth and Planetary Science Letters, v. 200, p. 371–386, doi:http://dx.doi.org/10.1016/S0012-821X(02)00652-0
    OpenUrlCrossRefGeoRefWeb of Science
  184. ↵
    1. Weil A. B.,
    2. Van der Voo R.
    , 2002, Insights into the mechanism for orogen-related carbonate remagnetization from growth of authigenic Fe-oxide: A scanning electron microscopy and rock magnetic study of Devonian carbonates from northern Spain: Journal of Geophysical Research, v. 107, 2063, doi:http://dx.doi.org/10.1029/2001JB000200
    OpenUrlCrossRef
  185. ↵
    1. Weil A. B.,
    2. Van der Voo R.,
    3. Mac Niocaill C.,
    4. Meert J.
    , 1998, The Proterozoic supercontinent Rodinia: Paleomagnetically derived reconstructions for 1100 to 800 Ma: Earth and Planetary Science Letters, v. 154, n. 1–4, p. 13–24, doi:http://dx.doi.org/10.1016/S0012-821X(97)00127-1
    OpenUrlCrossRefGeoRefWeb of Science
    1. Weil A. B.,
    2. Geissman J. W.,
    3. Heizler M.,
    4. Van der Voo R.
    , 2003, Paleomagnetism of Middle Proterozoic mafic intrusions and Upper Proterozoic (Nankoweap) red beds from the Lower Grand Canyon Supergroup, Arizona: Tectonophysics, v. 375, n. 1–4, p. 199–220, doi:http://dx.doi.org/10.1016/S0040-1951(03)00339-1
    OpenUrlCrossRefGeoRefWeb of Science
    1. Weil A. B.,
    2. Geissman J. W.,
    3. Van der Voo R.
    , 2004, Paleomagnetism of the Neoproterozoic Chuar Group, Grand Canyon Supergroup, Arizona: implications for Laurentia's Neoproterozoic APWP and Rodinia break-up: Precambrian Research, v. 129, n. 1–2, p. 71–92, doi:http://dx.doi.org/10.1016/j.precamres.2003.09.016
    OpenUrlCrossRefGeoRefWeb of Science
  186. ↵
    1. Weil A. B.,
    2. Geissman J. W.,
    3. Ashby J. M.
    , 2006, A new paleomagnetic pole for the Neoproterozoic Uinta Mountain supergroup, Central Rocky Mountain States, USA: Precambrian Research, v. 147, n. 3–4, p. 234–259, doi:http://dx.doi.org/10.1016/j.precamres.2006.01.017
    OpenUrlCrossRefGeoRefWeb of Science
  187. ↵
    1. Wells A. T.,
    2. Forman D. J.,
    3. Ranford L. C.,
    4. Cook P. J.
    , 1970, Geology of the Amadeus Basin, Central Australia: Bureau of Mineral Resources, Australia Bulletin 100, 222 p.
  188. ↵
    1. White R. W.,
    2. Clarke G. L.,
    3. Nelson D. R.
    , 1999, SHRIMP U-Pb zircon dating of Grenville-age events in the western part of the Musgrave Block, central Australia: Journal of Metamorphic Geology, v. 17, n. 5, p. 465–481, doi:http://dx.doi.org/10.1046/j.1525-1314.1999.00211.x
    OpenUrlCrossRefGeoRefWeb of Science
    1. Wingate M. T. D.,
    2. Giddings J. W.
    , 2000, Age and paleomagnetism of the Mundine Well dyke swarm, Western Australia: Implications for an Australia-Laurentia connection at 755 Ma: Precambrian Research, v. 100, n. 1–3, p. 335–357, doi:http://dx.doi.org/10.1016/S0301-9268(99)00080-7
    OpenUrlCrossRefGeoRefWeb of Science
  189. ↵
    1. Wingate M. T. D.,
    2. Pisarevsky S. A.,
    3. Evans D. A. D.
    , 2002, Rodina connections between Australia and Laurentia: no SWEAT, no AUSWUS?: Terra Nova, v. 14, n. 2, p. 121–128, doi:http://dx.doi.org/10.1046/j.1365-3121.2002.00401.x
    OpenUrlCrossRefGeoRefWeb of Science
    1. Wingate M. T. D.,
    2. Pisarevsky S. A.,
    3. De Waele B.
    , 2010, Paleomagnetism of the 765 Ma Luakela volcanics in Northwest Zambia and implications for Neoproterozoic positions of the Congo Craton: American Journal of Science, v. 310, n. 10, p. 1333–1344, doi:http://dx.doi.org/10.2475/10.2010.05
    OpenUrlAbstract/FREE Full Text
  190. ↵
    1. Woods S. D.,
    2. Elmore R. D.,
    3. Engel M. H.
    , 2002, Paleomagnetic dating of the smectite-to-illite conversion: Testing the hypothesis in Jurassic sedimentary rocks, Skye, Scotland: Journal of Geophysical Research, v. 107, n. B5, doi:http://dx.doi.org/10.1029/2000JB000053
    OpenUrlCrossRef
  191. ↵
    1. Xu W.,
    2. Van der Voo R.,
    3. Peacor D. R.
    , 1998, Electron microscopic and rock magnetic study of remagnetized Leadville carbonates, central Colorado: Tectonophysics, v. 296, n. 3–4, p. 333–362, doi:http://dx.doi.org/10.1016/S0040-1951(98)00146-2
    OpenUrlCrossRefGeoRefWeb of Science
  192. ↵
    1. Zegers T. E.,
    2. Dekkers M. J.,
    3. Bailly S.
    , 2003, Late Carboniferous to Permian remagnetization of Devonian limestones in the Ardennes: Role of temperature, fluids, and deformation: Journal of Geophysical Research, v. 108, 2357, doi:http://dx.doi.org/10.1029/2002JB002213
    OpenUrlCrossRef
  193. ↵
    1. Collinson D. W.,
    2. Creer K. M.,
    3. Runcorn S. K.
    1. Zijderveld J.
    , 1967, A. C. demagnetization of rocks: analysis of results, in Collinson D. W., Creer K. M., Runcorn S. K., editors, Methods in Paleomagnetism: New York, Elsevier, p. 256–286.
PreviousNext
Back to top

In this issue

American Journal of Science: 312 (8)
American Journal of Science
Vol. 312, Issue 8
1 Oct 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia
Nicholas L. Swanson-Hysell, Adam C. Maloof, Joseph L. Kirschvink, David A. D. Evans, Galen P. Halverson, Matthew T. Hurtgen
American Journal of Science Oct 2012, 312 (8) 817-884; DOI: 10.2475/08.2012.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia
Nicholas L. Swanson-Hysell, Adam C. Maloof, Joseph L. Kirschvink, David A. D. Evans, Galen P. Halverson, Matthew T. Hurtgen
American Journal of Science Oct 2012, 312 (8) 817-884; DOI: 10.2475/08.2012.01
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • METHODS
    • PALEOMAGNETIC RESULTS
    • ROCK MAGNETIC DATA
    • ORIGIN OF THE OBSERVED MAGNETIZATIONS
    • PAELOGEOGRAPHY DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • A template for an improved rock-based subdivision of the pre-Cryogenian timescale
  • Cryogenian evolution of stigmasteroid biosynthesis
  • The end of Midcontinent Rift magmatism and the paleogeography of Laurentia
  • Palaeomagnetism and geochronology of mid-Neoproterozoic Yanbian dykes, South China: implications for a c. 820-800 Ma true polar wander event and the reconstruction of Rodinia
  • Four-dimensional context of Earth's supercontinents
  • Stratigraphy and geochronology of the Tambien Group, Ethiopia: Evidence for globally synchronous carbon isotope change in the Neoproterozoic
  • Stratigraphic expression of Earth's deepest {delta}13C excursion in the Wonoka Formation of South Australia
  • True polar wander and supercontinent cycles: Implications for lithospheric elasticity and the triaxial earth
  • Reconstructing pre-Pangean supercontinents
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Keywords

  • Neoproterozoic
  • Australia
  • paleomagnetism
  • paleogeography
  • Rodinia
  • Bitter Springs Formation
  • Alice Springs orogeny

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire