Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
Research ArticleArticles

Synchronization of polar climate variability over the last ice age: in search of simple rules at the heart of climate's complexity

J. A. Rial
American Journal of Science April 2012, 312 (4) 417-448; DOI: https://doi.org/10.2475/04.2012.02
J. A. Rial
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Evidence is presented supporting the hypothesis of polar synchronization, which states that during the last ice age, and likely in earlier times, millennial-scale temperature changes of the north and south Polar Regions were coupled and synchronized. The term synchronization as used here describes how two or more coupled nonlinear oscillators adjust their (initially different) natural rhythms to a common frequency and constant relative phase. In the case of the Polar Regions heat and mass transfer through the intervening ocean and atmosphere provided the coupling. As a working hypothesis, polar synchronization brings new insights into the dynamic processes that link Greenland's Dansgaard-Oeschger (DO) abrupt temperature fluctuations to Antarctic temperature variability. It is shown that, consistent with the presence of polar synchronization, the time series of the most representative abrupt climate events of the last glaciation recorded in Greenland and Antarctica can be transformed into one another by a π/2 phase shift, with Antarctica temperature variations leading Greenland's. This, plus the fact that remarkable close simulations of the time series are obtained with a model consisting of a few nonlinear differential equations suggest the intriguing possibility that there are simple rules governing the complex behavior of global paleoclimate.

  • Polar climate synchronization
  • Greenland-Antarctica teleconnection
  • climatic oscillators
  • complex systems
  • coupled Polar Regions
  • polar phase shift
  • dynamic paleoclimatology
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

American Journal of Science: 312 (4)
American Journal of Science
Vol. 312, Issue 4
1 Apr 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Synchronization of polar climate variability over the last ice age: in search of simple rules at the heart of climate's complexity
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Synchronization of polar climate variability over the last ice age: in search of simple rules at the heart of climate's complexity
J. A. Rial
American Journal of Science Apr 2012, 312 (4) 417-448; DOI: 10.2475/04.2012.02

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Synchronization of polar climate variability over the last ice age: in search of simple rules at the heart of climate's complexity
J. A. Rial
American Journal of Science Apr 2012, 312 (4) 417-448; DOI: 10.2475/04.2012.02
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • THE POLAR PHASE SHIFT
    • A POLAR SYNCHRONIZATION MODEL
    • SYNCHRONIZATION AS A COMPLEXITY-REDUCING, SELF-ORGANIZING MECHANISM
    • DISCUSSION AND CONCLUDING REMARKS
    • ACKNOWLEDGMENTS
    • APPENDIX A
    • APPENDIX B
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Determining the origin of inclusions in garnet: Challenges and new diagnostic criteria
  • Constraints on surface temperature 3.4 billion years ago based on triple oxygen isotopes of cherts from the Barberton Greenstone Belt, South Africa, and the problem of sample selection
  • Miocene to Pleistocene glacial history of West Antarctica inferred from Nunatak geomorphology and cosmogenic-nuclide measurements on bedrock surfaces
Show more Articles

Similar Articles

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2021 American Journal of Science

Powered by HighWire