Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleArticles

Low-temperature thermochronology of the northern Rocky Mountains, western U.S.A.

S. Lynn Peyton, Peter W. Reiners, Barbara Carrapa and Peter G. DeCelles
American Journal of Science February 2012, 312 (2) 145-212; DOI: https://doi.org/10.2475/02.2012.04
S. Lynn Peyton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: speyton@email.arizona.edu
Peter W. Reiners
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Barbara Carrapa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter G. DeCelles
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

We dated 86 borehole and surface samples from basement-cored Laramide uplifts of the northern Rocky Mountain foreland (Wind River, Beartooth, Bighorn and Laramie Ranges) using the apatite (U-Th)/He system, and eleven samples using the apatite fission-track system (Wind River and Bighorn Ranges). Apatite (U-Th)/He ages generally decrease with increasing subsurface depth (decreasing elevation), and typically range from ∼100 to 50 Ma (Cretaceous to Eocene) within ∼1 km of the surface, to ∼20 Ma (Miocene) and younger ages at depths greater than ∼2 to 2.5 km. Most samples display (U-Th)/He age dispersion ranging from tens to hundreds of Ma, and for some samples we find ages that are older than corresponding fission-track ages. At least one sample per range shows a correlation between apatite (U-Th)/He age and effective U concentration (eU = [U] + 0.235[Th]) of the crystal, indicating that radiation damage has affected He diffusivity, and hence (U-Th)/He age.

Forward modeling of simple Laramide-type thermal histories using a radiation damage diffusion model predicts: 1) fossil apatite fission-track partial annealing and apatite (U-Th)/He partial retention zones over similar elevation ranges, 2) (U-Th)/He age dispersion within a fossil partial retention zone up to hundreds of Ma, and 3) (U-Th)/He ages older than fission-track ages within a fossil partial retention zone if eU ≳ 20 ppm. We observe these features in our data from the Bighorn and Laramie Ranges. Most of our samples, however, do not show the correlation between (U-Th)/He age and eU predicted by radiation damage diffusion models. The age dispersion of these samples could be due to the influence of both grain size and eU content, or alternatively due to high U or Th secondary rims around the apatite crystals. (U-Th)/He ages that are older than fission-track ages from Gannett Peak and Fremont Peak in the Wind River Range, and some samples from the Beartooth Range, are most likely the result of He implantation from high eU secondary rims.

Best-fit time-temperature paths from inverse modeling of (U-Th)/He age-eU pairs, when extrapolated to other elevations to create model age-elevation plots, reproduce the general distribution and dispersion of (U-Th)/He ages from the Bighorn, Beartooth and Wind River Ranges and suggest that rapid exhumation within the Laramide province likely began earlier in the Bighorn Range (before ∼71 Ma) than the Beartooth Range (before ∼58 Ma). Inverse modeling of borehole data at the northern end of the Laramie Range suggests that the well penetrated a fault sliver at depth. The amount and timing of post-Laramide burial and exhumation cannot be determined from these data.

  • Thermochronology
  • (U-Th)/He dating
  • apatite fission track
  • radiation damage
  • Laramide orogeny
  • Rocky Mountains
  • exhumation
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

American Journal of Science: 312 (2)
American Journal of Science
Vol. 312, Issue 2
1 Feb 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Low-temperature thermochronology of the northern Rocky Mountains, western U.S.A.
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
18 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Low-temperature thermochronology of the northern Rocky Mountains, western U.S.A.
S. Lynn Peyton, Peter W. Reiners, Barbara Carrapa, Peter G. DeCelles
American Journal of Science Feb 2012, 312 (2) 145-212; DOI: 10.2475/02.2012.04

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Low-temperature thermochronology of the northern Rocky Mountains, western U.S.A.
S. Lynn Peyton, Peter W. Reiners, Barbara Carrapa, Peter G. DeCelles
American Journal of Science Feb 2012, 312 (2) 145-212; DOI: 10.2475/02.2012.04
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • BACKGROUND
    • METHODS
    • DATA
    • MODELING
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Depositional environment, sediment provenance and oxygen isotope paleoaltimetry of the early Paleogene greater Green River Basin, southwestern Wyoming, U.S.A.
  • Exhumation of the North American Cordillera revealed by multi-dating of Upper Jurassic-Upper Cretaceous foreland basin deposits
  • Towards a better understanding of the influence of basement heterogeneities and lithospheric coupling on foreland deformation: A structural and paleomagnetic study of Laramide deformation in the southern Bighorn Arch, Wyoming
  • Plant response to a global greenhouse event 56 million years ago
  • Detrital zircon geochronology from Cenomanian-Coniacian strata in the Bighorn Basin, Wyoming, U.S.A.: Implications for stratigraphic correlation and paleogeography
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire