Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • Pricing
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleARTICLES

The thermochronological record of tectonic and surface process interaction at the Yakutat–North American collision zone in southeast Alaska

E. Enkelmann, P. K. Zeitler, J. I. Garver, T. L. Pavlis and B. P. Hooks
American Journal of Science April 2010, 310 (4) 231-260; DOI: https://doi.org/10.2475/04.2010.01
E. Enkelmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. K. Zeitler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. I. Garver
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. L. Pavlis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. P. Hooks
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    Barker F., Farmer, G. L., Ayuso, R. A., Plafker, G., and Lull, J. S., 1992, The 50 Ma granodiorite of the eastern Gulf of Alaska: Melting in an accretionary prism in the forarc: Journal of Geophysical Research, v. 97, n. B5, p. 6757–6778, doi:10.1029/92JB00257.
    OpenUrlGeoRef
  2. ↵
    Batt G. E., and Brandon, M. T., 2002, Lateral thinking: 2-D interpretation of thermochronology in convergent orogenic settings: Tectonophysics, v. 349, p. 185–201, doi:10.1016/S0040-1951(02)00053-7.
    OpenUrlCrossRefGeoRefWeb of Science
  3. ↵
    Batt G. E., Brandon, M. T., Farley, K. A., and Roden-Tice, M., 2001, Tectonic synthesis of the Olympic Mountains segment of the Cascadia wedge, using two-dimensional thermal and kinematic modeling of thermochronological ages: Journal of Geophysical Research, v. 106, B11, p. 26,731–26,746, doi:10.1029/2001JB000288.
    OpenUrlCrossRefWeb of Science
  4. ↵
    Beaumont C., Fullsack, P., and Hamilton, J., 1992, Erosional control of active compressional orogens, in McClay, K. R., editor, Thrust Tectonics: New York, Chapman and Hall, p. 1–18.
  5. ↵
    Berger A. L., and Spotila, J. A., 2008, Denudation and deformation in a glaciated orogenic wedge: The St. Elias orogen, Alaska: Geology, v. 36, p. 523–526, doi:10.1130/G24883A.1.
    OpenUrlAbstract/FREE Full Text
  6. ↵
    Berger A. L., Spotila, J. A., Chapman, J. B., Pavlis, T. L., Enkelmann, E., Ruppert, N. A., and Buscher, J. T., 2008a, Architecture, kinematics, and exhumation of a convergent orogenic wedge: A thermochronological Investigation of tectonic-climatic interactions within the central St. Elias Orogen, Alaska: Earth and Planetary Science Letters, v. 270, p. 13–24, doi:10.1016/j.epsl.2008.02.034.
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    Berger A. L., Gulick, S. P. S., Spotila, J. A., Upton, P., Jaeger, J. M., Chapman, J. B., Worthington, L. A., Pavlis, T. L., Ridgway, K. D., Willems, B. A., and McAleer, R. J., 2008b, Quaternary tectonic response to intensified glacial erosion in an orogenic wedge: Nature Geoscience, v. 1, p. 793–796, doi:10.1038/ngeo334.
    OpenUrlCrossRefWeb of Science
  8. ↵
    Booth A. L., Chamberlain, P. C., Kidd, W. S. F., and Zeitler, P. K., 2009, Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa: Geological Society of America Bulletin, v. 121, p. 385–407, doi: 10.1130/B26041.1.
    OpenUrlAbstract/FREE Full Text
  9. ↵
    Brandon M. T., 1996, Probability density plot for fission track grain-age samples: Radiation Measurements, v. 26, p. 663–676, doi:10.1016/S1350-4487(97)82880-6.
    OpenUrlCrossRefWeb of Science
  10. ↵
    Brandon M. T., Roden-Tice, M. K., and Garver, J. I., 1998, Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State: Geological Society of America Bulletin, v. 110, p. 985–1009, doi:10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2.
    OpenUrlAbstract/FREE Full Text
  11. ↵
    Brocklehurst S. H., and Whipple K. X., 2002, Glacial erosion and relief production in the eastern Sierra Nevada, California: Geomorphology, v. 42, p. 1–24, doi:10.1016/S0169-555X(01)00069-1.
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    ––––2007, Response of glacial landscapes to spatial variations in rock uplift rate: Journal of Geophysical Research, v. 112, p. F02035, doi:10.1029/2006JF000667.
    OpenUrlCrossRef
  13. ↵
    Bruhn R. L., Pavlis, T. L., Plafker, G., and Serpa, L., 2004, Deformation during terrane accretion in the Saint Elias orogen, Alaska: Geological Society of America Bulletin, v. 116, p. 771–787, doi:10.1130/B25182.1.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    Carlson W. D., Donelick, R. A., and Ketcham, R. A., 1999, Variability of apatite fission track annealing kinetics: I. Experimental Results: American Mineralogist, v. 84, p. 1213–1223.
    OpenUrlAbstract
  15. ↵
    Christeson G. L.,van Avendonk, H., Gulick, S. P., Worthington, L., and Pavlis, T., 2008, Crustal structure of the Yakutat microplate: constraints from STEEP wide-angle seismic data: Eos Transactions, AGU 89(53), Fall Meeting Supplement, Abstract T53B-1942.
  16. ↵
    Conway H., Smith, B., Vaswani, P., Matsuoka, K., Rignot, E., and Claus P., 2009, A low-frequency ice-penetrating radar system adapted for use from an airplane: test results from Bering and Malaspina Glaciers, Alaska: Annals of Glaciology, v. 50, p. 93–97, doi: 10.3189/172756409789097487.
    OpenUrlCrossRefGeoRef
  17. ↵
    Cowan D. S., 2003, Revisiting the Baranof–Leech River hypothesis for early Tertiary coastwise transport of the Chugach–Prince William terrane: Earth and Planetary Science Letters, v. 213, p. 463–475, doi:10.1016/S0012-821X(03)00300-5.
    OpenUrlCrossRefGeoRefWeb of Science
  18. ↵
    Cundall P. A., and Board, M., 1988, A microcomputer program for modeling large-strain plasticity problems, in Swododa, C., editor, Numerical Methods in Geomechanics, Proceedings of the 6th International Conference on Numerical Methods in Geomechanics, Innsbruck, Austria, April 11–15: Rotterdam, Balkema, p. 2101–2108.
  19. ↵
    Dodson M. H., 1973, Closure temperature in cooling geochronological and petrological systems: Contributions to Mineralogy and Petrology, v. 40, p. 259–274, doi:10.1007/BF00373790.
    OpenUrlCrossRefGeoRefWeb of Science
  20. ↵
    Eberhart-Phillips D., Christensen, D. H., Brocher, T. M., Hansen, R., Ruppert, N. A., Haeussler, P. J., and Abers, G. A., 2006, Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data: Journal of Geophysical Research, v. 111, p. B11303, doi:10.1029/2005JB004240.
    OpenUrlCrossRef
  21. ↵
    Elliott J., Freymueller, J. T., and Larsen, C. F., 2008, Collisional Tectonics in the St. Elias orogen, Alaska, observed by GPS: Eos Transactions, AGU 89 Fall Meeting Supplement, Abstract T44A-04.
  22. ↵
    Enkelmann E., Garver, J. I., and Pavlis, T. L., 2008, Rapid exhumation of ice-covered rocks of the Chugach-St. Elias orogen, Southeast Alaska: Geology, v. 36, p. 915–918, doi:10.1130/G2252A.1.
    OpenUrlAbstract/FREE Full Text
  23. ↵
    Enkelmann E., Zeitler, P. K., Pavlis, T. L, Garver, J. I., and Ridgway, K. D., 2009, Intense Localized Rock Uplift and Erosion in the St. Elias Orogen of Alaska: Nature Geoscience, v. 2, p. 360–363, doi:10.1038/ngeo502.
    OpenUrlCrossRefWeb of Science
  24. ↵
    Ferris A., Abers, G. A., Christensen, D. H., and Veenstra, E., 2003, High resolution image of the subducted Pacific (?) plate beneath central Alaska, 50–150 km depth: Earth and Planetary Science Letters, v. 214, p. 575–588, doi:10.1016/S0012-821X(03)00403-5.
    OpenUrlCrossRefGeoRefWeb of Science
  25. ↵
    Finnegan N. J., Hallet, B., Montgomery, D. R., Zeitler, P. K., Stone, J. O., Anders, A. M., and Yuping, L., 2008, Coupling of rock uplift and river incision in the Namche Barwa–Gyala Peri massif, Tibet: Geological Society of America, v. 120, p. 142–155, doi:10.1130/B26224.1.
    OpenUrlCrossRef
  26. ↵
    Fletcher H. J., and Freymueller J. T., 1999, New GPS constraints on the motion of the Yakutat block: Geophysical Research Letters, v. 19, p. 3029–3032, doi:10.1029/1999GL005346.
    OpenUrlCrossRef
  27. ↵
    ––––2003, New constraints on the motion of the Fairweather fault, Alaska, from GPS observations: Geophysical Research Letters, v. 30, p. 1139, doi:10.1029/2002GL016476.
    OpenUrlCrossRef
  28. ↵
    Flores R. M., Stricker, G. D., and Kinney, S. A., 2004, Alaska Coal Geology, Resources, and Coalbed Methane Potential: U.S. Geological Survey DDS-77, 125 p., 3 sheets.
  29. ↵
    Freymueller J. T., Woodard, H., Cohen, S. C., Cross, R. S., Elliott, J., Larsen, C. F., Hreinsdottir, S., and Zweck, C., 2008, Active deformation processes in Alaska, based on 15 years of GPS measurements, in Freymueller, J. T., Haeussler, P. J., Wesson, R. L., and Ekström, G., editors, Active Tectonics and Seismic Potential of Alaska: Geophysical Monograph Series, v. 179, p. 1–42.
    OpenUrlGeoRef
  30. ↵
    Fuis G. S., Moore, T. E., Plafker, G., Brocher, T. M., Fisher, M. A., Mooney, W. D., Nokleberg, W. J., Page, R. A., Beaudoin, B. C., Christensen, N. I., Levander, A. R., Lutter, W. J., Saltus, R. W., and Ruppert, N. A., 2008, Trans-Alaska crustal transect and continental evolution involving subduction underplating and synchronous foreland thrusting: Geology, v. 36, p. 267–270, doi:10.1130/G24257A.1.
    OpenUrlAbstract/FREE Full Text
  31. ↵
    Galbraith R. F., and Green, P. F., 1990, Estimating the component ages in a finite mixture: Nuclear Tracks and Radiation Measurements, v. 17, p. 197–206, doi:10.1016/1359-0189(90)90035-V.
    OpenUrlCrossRefGeoRefWeb of Science
  32. ↵
    Green P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. T., and Laslett, G. M., 1986, Thermal annealing of fission tracks in apatite: 1. A qualitative description: Chemical Geology: Isotopic Geoscience section, v. 59, p. 237–253, doi:10.1016/0168-9622(86)90074-6.
    OpenUrlCrossRef
  33. ↵
    Gulick S. P. S., Pavlis, T. L., Christeson, G., Jaeger, J. M., Ridgway, K. D., Worthington, L., Reece, R. S., and Horton, B. K., 2009, Marine records of flat slab subduction influenced by temperate glaciations in the St. Elias orogen, Gulf of Alaska: GSA Annual Meeting, Portland, Abstact No. 108-17.
  34. ↵
    Hallet B., Hunter, L., and Bogen, J., 1996, Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications: Global and Planetary Change, v. 12, p. 213–235, doi:10.1016/0921-8181(95)00021-6.
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    Harrison T. M., Grove, M., Lovera, O. M., and Zeitler, P. K., 2005, Continuous thermal histories from inversion of closure profiles, in Reiners, P. W., and Ehlers. T. A., editors, Low-Temperature Thermochronology: Techniques, Interpretations, and Applications: Reviews in Mineralogy and Geochemistry, v. 58, p. 389–409, doi: 10.2138/rmg.2005.58.15.
    OpenUrlCrossRef
  36. ↵
    Headley R., Hallet, B., and Rignot, E., 2007, Measurements of Fast ice Flow of the Malaspina Glacier to Explore Connections Between Glacial Erosion and Crustal Deformation in the St. Elias Mountains, Alaska: Eos Transactions, AGU, 88(52), Fall Meeting Supplement, Abstract C41A-0050.
  37. ↵
    Hooks B. P., ms, 2009, Geodynamics of terrane accretion within southern Alaska: Orono, Maine, University of Maine, Ph. D. thesis, 188 p.
  38. ↵
    Hooks B. P., Enkelmann, E., Koons, P. O., and Upton, P., 2009, 3D thermomechanical modeling of the St. Elias Tectonic aneurysm: Geological Society of America Abstracts with Programs, v. 41, n. 7, p. 305.
    OpenUrl
  39. ↵
    Hudson T., 1983, Calk-alkaline plutonism along the Pacific rim of southern Alaska, in Roddick, J. A., editor, Circum-Pacific plutonic terranes: Boulder, Colorado, GSA Memoir, v. 159, p. 159–169.
    OpenUrl
  40. ↵
    Hudson T., Plafker, G., and Rubin, M., 1976, Uplift rates of marine terrace sequences in the Gulf of Alaska, in Cobb, E. H., editor, The United States Geological Survey in Alaska: Accomplishments during 1975: Denver, Colorado, United States Geological Survey, p. 11–13.
  41. ↵
    Johnsson M. J., Pawlewicz, M. J., Harris, A. G., and Valin, Z. C., 1992, Vitrinite reflectance and conodont color alteration index data from Alaska: data to accompany the thermal maturity map of Alaska: USGS Open-File Report 92–409.
  42. ↵
    Kalbas J. L., Freed, A. M., and Ridgway, K. D., 2008, Contemporary fault mechanics in Southern Alaska, in Freymueller, J. T., Haeussler, P. T., Wesson, R., and Ekström, G., editors, Active Tectonics and Seismic Potential of Alaska: Geophysical Monograph Series, v. 179, p. 321–336.
    OpenUrlGeoRef
  43. ↵
    Koons P. O., 1987, Some thermal and mechanical consequences of rapid uplift: An example from the Southern Alps, New Zealand: Earth and Planetary Science Letters, v. 86, p. 307–319, doi:10.1016/0012-821X(87)90228-7.
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    ––––1990, Two-sided orogeny; Collision and erosion from the sandbox to the Southern Alps, New Zealand: Geology, v. 18, p. 679–682, doi:10.1130/0091-7613(1990)018<0679:TSOCAE>2.3.CO;2.
    OpenUrlAbstract/FREE Full Text
  45. ↵
    Koons P. O., Zeitler, P. K., Chamberlain, C. P., Craw, D., and Meltzer, A. S., 2002, Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya: American Journal Science, v. 302, p. 749–773, doi:10.2475/ajs.302.9.749.
    OpenUrlCrossRef
  46. ↵
    Koons P. O., Hooks, B. P., Pavlis, T., and Upton, P., and Barker, A. D., 2010, Three-dimensional mechanics of Yakutat convergence in the southern Alaskan plate corner: Tectonics, doi:10.1029/2009TC002463.
    OpenUrlCrossRef
  47. ↵
    Korup O., and Montgomery, D. R., 2008, Tibetan plateau river incision inhibited by glacial stabilization of the Tsangpo gorge: Nature, v. 455, p. 786–789, doi:10.1038/nature07322.
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  48. ↵
    Lagoe M. B., and Zellers, S. D., 1996, Depositional and microfaunal response to Pliocene climate change and tectonics in the eastern Gulf of Alaska: Marine Micropaleontology, v. 27(1-4), p. 121–140, doi:10.1016/0377-8398(95)00055-0.
    OpenUrlCrossRef
  49. ↵
    Lagoe M. B., Eyles, C. H., Eyles, N., and Hale, C., 1993, Timing of late Cenozoic tidewater glaciation in the far North Pacific: Geological Society of America Bulletin, v. 105, p. 1542–1560, doi:10.1130/0016-7606(1993)105<1542:TOLCTG>2.3.CO;2.
    OpenUrlAbstract/FREE Full Text
  50. ↵
    Lahr J. C., and Plafker, G., 1980, Holocene Pacific-North American plate interaction in southern Alaska: Implications for the Yakataga seismic gap: Geology, v. 8, p. 483–486, doi:10.1130/007613(1980)8<483:HPAPII>2.0.CO;2.
    OpenUrlAbstract/FREE Full Text
  51. ↵
    Larsen C. F., Motyka, R. J., Freymueller, J. T., Echelmeyer, K. A., and Ivins, E. R., 2004, Rapid uplift of southern Alaska caused by recent ice loss: Geophysical Journal International, v. 158, p. 1118–1133, doi:10.1111/j.1365-246X.2004.02356.x.
    OpenUrlAbstract/FREE Full Text
  52. ↵
    Lock J., and Willett, S., 2008, Low-temperature thermochronometric ages in fold-and-thrust belts: Tectonophysics, v. 456, p. 147–162, doi:10.1016/j.tecto.2008.03.007.
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    Lowe L. A., Gulick, S. P., Christeson, G. L., van Avendonk, H., Reece, R., Elmore, R., and Pavlis, T., 2008, Crustal structure and deformation of the Yakutat microplate: New insights from STEEP marine seismic reflection data: Eos Transactions, AGU 89 (53), Fall Meeting Supplement, Abstract 236 T53B-1941.
  54. ↵
    MacKevett E. M., Jr., 1978, Geologic map of McCarthy quadrangle, Alaska: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-1032, 1 sheet, scale 1:250,000.
  55. ↵
    Mancktelow N. S., and Graseman, B., 1997, Time-dependent effects of heat advection and topography on cooling histories during erosion: Tectonophysics, v. 270, p. 167–195, doi:10.1016/S0040-1951(96)00279-X.
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    McAleer R. J., Spotila, J. A., Enkelmann, E., and Berger, A. L., 2009, Exhumation along the Fairweather Fault, Southeast Alaska, based on Low-Temperature Thermochronometry: Tectonics, v. 28, p. TC1007, doi:10.1029/2007TC002240.
    OpenUrlCrossRef
  57. ↵
    Meigs A., and Sauber, J., 2000, Southern Alaska as an example of the long-term consequences of mountain building under the influence of glaciers, in Stewart, I. S., Sauber, J., and Rose, J., editors, Glacio-seismotectonics; ice sheets, crustal deformation and seismicity: Quaternary Science Reviews, v. 19, n. 14, p. 1543–1562.
    OpenUrl
  58. ↵
    Meigs A., Johnston, S., Garver, J., and Spotila, J., 2008, Crustal-scale structural architecture, shortening, and exhumation of an active, eroding orogenic wedge (Chugach/St. Elias Range, southern Alaska): Tectonics, v. 27, p. TC4003, doi:10.1029/2007TC002168.
    OpenUrlCrossRef
  59. ↵
    Nokleberg W. J., Plafker, G., and Wilson, F. H., 1994, Geology of south-central Alaska, in Plafker, G., and Berg, H. C., editors, The Geology of Alaska: Boulder, Colorado, Geological Society of America, Geology of North America, v. G-1, p. 311–366.
    OpenUrl
  60. ↵
    O'Sullivan P. B., and Currie, L. D., 1996, Thermotectonic history of Mt. Logan, Yukon Territory, Canada: implications of multiple episodes of middle to late Cenozoic denudation: Earth and Planetary Science Letters, v. 144, p. 251–261, doi:10.1016/0012-821X(96)00161-6.
    OpenUrlCrossRefGeoRefWeb of Science
  61. ↵
    O'Sullivan P. B., Plafker, G., and Murphy, J. M., 1997, Apatite Fission-Track Thermotectonic History of Crystalline Rocks in the Northern Saint Elias Mountains, Alaska, in Dumoulin, J. A., and Gray, J. E., editors, Geological studies in Alaska by the United States Geological Survey, 1995: United States Geological Survey Professional Paper, v. 1574, p. 283–294.
    OpenUrl
  62. Page R. A., 1969, Late Cenozoic movement on the Fairweather Fault in Southeast Alaska: Geological Society of America Bulletin, v. 80, p. 1873–1878, doi:10.1130/0016-7606(1969)80[1873:LCMOTF]2.0.CO;2.
    OpenUrlAbstract/FREE Full Text
  63. ↵
    Pavlis T. L., and Roeske, S. M., 2007, The Border Ranges fault system, southern Alaska, in Ridgway, K. D., Trop, J. M., Glen, J. M. G., and O'Neill, J. M., editors, Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Paper, v. 431, p. 95–127, doi:10.1130/2007.2431(05).
    OpenUrlCrossRef
  64. ↵
    Pavlis T. L., Marty, K., and Sisson, V. B., 2003, Constrictional flow within the Eocene forearc of Southern Alaska; An effect of dextral shear during ridge subduction, in Sisson, V. B., Roeske, S. M., and Pavlis, T. L., editors, Geology of a transpressional orogen developed during ridge-trench interaction along the Pacific margin: Geological Society of America Special Paper, v. 371, p. 171–190, doi:10.1130/0-8137-2371-X.171.
    OpenUrlCrossRef
  65. ↵
    Pavlis T. L., Picornell, C., Serpa, L., Bruhn, R. L., and Plafker, G., 2004, Tectonic processes during oblique collision: Insights from the St. Elias orogen, northern North American Cordillera: Tectonics, v. 23, p. TC3001, doi:10.1029/2003TC001557.
    OpenUrlCrossRef
  66. ↵
    Perry S. E., ms, 2006, Thermochronology and provenance of the Yakutat terrane, southern Alaska based on fission-track and U/Pb analysis of detrital zircon: State University of New York at Albany, M.S. thesis, 167 p.
  67. ↵
    Perry S. E., Garver, J. I., and Ridgway, K. D., 2009, Transport of the Yakutat Terrane, Southern Alaska: Evidence from Sediment Petrology and Detrital Zircon Fission-Track and U/Pb Double Dating: The Journal of Geology, v. 117, p. 156–173. doi:10.1086/596302.
    OpenUrlCrossRefGeoRefWeb of Science
  68. ↵
    Péwé T. L., 1975, Quaternary geology of Alaska: U.S. Geological Survey Professional Paper, v. 835, 139 p.
    OpenUrl
  69. ↵
    Plafker G., 1987, Regional geology and petroleum potential of the northern Gulf of Alaska continental margin, in Scholl, D. W., Grantz, A., and Vedder, J. G., editors., Geology and resource potential of the continental margin of western North America and adjacent ocean basins—Beaufort Sea to Baja, California: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6, p. 229–268.
    OpenUrl
  70. ↵
    Plafker G., and Thatcher, W., 2008, Geological and geophysical evaluation of the mechanisms of the great 1899 Yakutat Bay Earthquakes, in Freymueller, J. T., Haeussler, P. J., Wesson, R. L., and Ekstrom, G., editors, Active tectonics and seismic potential of Alaska: American Geophysical Union Monograph, v. 179, p. 215–236.
    OpenUrl
  71. ↵
    Plafker G., Jones, D., and Pessagno, E. A., Jr., 1977, A Cretaceous accretionary flysch and mélange terrane along the Gulf of Alaska margin, in Blean, K. M., editor, U.S. Geological Survey in Alaska: Accomplishments during 1976: USGS Circular 751-B, B41–B43.
  72. ↵
    Plafker G., Hudson, T., Bruns, T. R., and Rubin, M., 1978, Late Quaternary offsets along the Fairweather Fault and crustal plate interactions in southern Alaska: Canadian Journal of Earth Sciences, v. 15, p. 805–816.
    OpenUrlAbstract
  73. ↵
    Plafker G., Nokleberg, W. J., and Lull, J. S., 1989, Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and southern Copper River Basin, Alaska: Journal of Geophysical Research, v. 94, n. B4, p. 4255–4295, doi:10.1029/JB094iB04p04255.
    OpenUrlCrossRef
  74. ↵
    Plafker G., Moore, J. C., and Winkler, G. R., 1994, Geology of the southern Alaska margin, in Plafker, G., and Berg, H. C., editors, The Geology of Alaska: Boulder, Colorado, Geological Society of America, Geology of North America, v. G-1, p. 389–449.
    OpenUrl
  75. ↵
    Rahn M. K., Brandon, M. T., Batt, G. E., and Garver, J. I., 2004, A zero-damage model for fission-track annealing in zircon: American Mineralogist, v. 89, p. 473–484.
    OpenUrlAbstract/FREE Full Text
  76. ↵
    Raymo M. E., 1994, The initiation of Northern Hemisphere glaciation: Annual Review of Earth and Planetary Sciences, v. 22, p. 353–383, doi:10.1146/annurev.ea.22.050194.002033.
    OpenUrlCrossRefGeoRefWeb of Science
  77. ↵
    Reiners P. W., Spell, T. L., Nicolescu, S., and Zanetti, K. A., 2004, Zircon (U-Th)/He thermochronometry: He diffusion and comparison with 40Ar/39Ar dating: Geochimica et Cosmochimica Acta, v. 68, p. 1857–1887, doi:10.1016/j.gca.2003.10.021.
    OpenUrlCrossRefGeoRefWeb of Science
  78. ↵
    Richter D. H., and Matson, N. A., Jr., 1971, Quaternary faulting in the Eastern Alaska Range: Geological Society of America Bulletin, v. 82, p. 1529–1539, doi:10.1130/0016-7606(1971)82[1529:QFITEA]2.0.CO;2.
    OpenUrlAbstract/FREE Full Text
  79. ↵
    Richter D. H., Preller, C. C., Labay, K. A., and Shew, N. B., 2006, Geologic Map of the Wrangell-Saint Elias National Park and Preserve, Alaska: USGS Scientific Investigation Map 2877.
  80. ↵
    Ruppert N. A., Ridgway, K. D., Freymueller, J. T., Cross, R. S., and Hansen, R. A., 2008, Active Tectonics of Interior Alaska: A synthesis of Seismic, GPS Geodesy, and Local Geomorphology, in Freymueller, J. T., Haeussler, P. J., Wesson, R. L., and Ekstrom, G., editors, Active Tectonics and Seismic Potential of Alaska: Geophysical Monograph Series, v. 179, p. 109–133.
    OpenUrlGeoRef
  81. ↵
    Schuster D. L., Flowers, R. M., and Farley, K. A., 2006, The influence of natural radiation damage on helium diffusion kinetics in apatite: Earth and Planetary Science Letters, v. 249, p. 148–161, doi:10.1016/j.epsl.2006.07.028.
    OpenUrlCrossRefGeoRefWeb of Science
  82. ↵
    Sisson V. B., Poole, A. R., Harris, N. R., Burner, H. C., Pavlis, T. L., Copeland, P., Donelick, R. A., and McLelland, W. C., 2003, Geochemical and geochronologic constraints for genesis of a tonalite-trondjemite suite and associated mafic intrusive rocks in the eastern Chugach Mountains, Alaska: A record of ridge-transform subduction, in Sisson, V. B., Roeske, S. M., and Pavlis, T. L., editors, Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific margin: GSA Special Paper 371, p. 293–326, doi:10.1130/0-8137-2371-X.293.
    OpenUrlCrossRef
  83. ↵
    Smith W. H. F., and Sandwell, D. T., 1997, Global seafloor topography from satellite altimetry and ship depth soundings: Science, v. 277, p. 1956–1962, doi: 10.1126/science.277.5334.1956.
    OpenUrlCrossRefGeoRefWeb of Science
  84. ↵
    Spotila J. A., Buscher, J. T., Meigs, A. J., and Reiners, P. W., 2004, Long-term glacial erosion of active mountain belts: Example of the Chugach-St. Elias Range, Alaska: Geology, v. 32, p. 501–504, doi:10.1130/G20343.1.
    OpenUrlAbstract/FREE Full Text
  85. ↵
    St. Amand P., 1957, Geological and geophysical synthesis of the tectonics of portions of British Columbia, the Yukon Territory, and Alaska: The Geological Society of America Bulletin, v. 68, p. 1343–1370, doi:10.1130/0016-7606(1957)68[1343:GAGSOT]2.0.CO;2.
    OpenUrlAbstract/FREE Full Text
  86. ↵
    Stewart R. J., Hallet, B., Zeitler, P. K., Malloy, M. A., Allen, C. M., and Trippett, D., 2008, Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya: Geology, v. 36, p. 711–714, doi:10.1130/G24890A.1.
    OpenUrlAbstract/FREE Full Text
  87. ↵
    Stock J., and Molnar, P., 1988, Uncertainties and implications of the Late Cretaceous and Tertiary position of North America relative to the Farallon, Kula and Pacific plates: Tectonics, v. 7, p. 1339–1384, doi:10.1029/TC007i006p01339
    OpenUrlGeoRefWeb of Science
  88. ↵
    Tagami T., Galbraith, R. F., Yamada, R., and Laslett, G. M., 1998, Revised annealing kinetics of fission tracks in zircon and geological implications, in Van den haute, P., and De Corte, F., editors, Advances in Fission-Track Geochronolgy: Dordrecht, The Netherlands, Kluwer Academic Publisher p. 99–112.
  89. ↵
    Tomkin J. H., 2007, Coupling glacial erosion and tectonics at active orogens: A numerical modeling study: Journal of Geophysical Research, v. 112, p. F02015, doi:10.1029/2005JF000332.
    OpenUrlCrossRef
  90. ↵
    Tomkin J. H., and Braun, J., 2002, The influence of alpine glaciation on the relief of tectonically active mountain belts: American Journal of Science, v. 302, p. 169–190, doi:10.2475/ajs.302.3.169.
    OpenUrlAbstract/FREE Full Text
  91. ↵
    Tomkin J. H., and Roe, G. H., 2007, Climate and tectonic controls on glaciated critical-taper orogens: Earth and Planetary Science Letters, v. 262, p. 385–397, doi:10.1016/j.epsl.2007.07.040.
    OpenUrlCrossRefGeoRefWeb of Science
  92. ↵
    Trop J. M., and Ridgway, K. D., 2007, Mesozoic and Cenozoic tectonic growth of southern Alaska: A sedimentary basin perspective, in Ridgway, K. D., Trop, J. M., Glen, J. M. G., and O'Neill, J. M., editors, Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Paper, v. 431, p. 55–94, doi:10.1130/2007.2431(04).
    OpenUrlCrossRef
  93. ↵
    Trop J. M., Ridgway, K. D., Manuszak, J. D., and Layer, P., 2002, Mesozoic sedimentary-basin development on the allochthonous Wrangellia composite terrane, Wrangell Mountains basin, Alaska: A long-term record of terrane migration and arc construction: Geological Society of America Bulletin, v. 114, p. 693–717, doi: 10.1130/0016-7606(2002)114<0693:MSBDOT>2.0.CO;2
    OpenUrlAbstract/FREE Full Text
  94. ↵
    Trop J. M., Ridgway, K. D., and Sweet, A. R., 2004, Stratigraphy, palynology, and provenance of the Colorado Creek basin, Alaska, U.S.A.: Oligocene transpressional tectonics along the central Denali fault system: Canadian Journal of Earth Sciences, v. 41, p. 457–480, doi:10.1139/e04-003.
    OpenUrlAbstract/FREE Full Text
  95. ↵
    Whipple K. X., 2009, The influence of climate on the tectonic evolution of mountain belts: Nature Geoscience, v. 2, p. 97–104, doi:10.1038/ngeo413.
    OpenUrlCrossRefWeb of Science
  96. ↵
    Whipple K. X., and Meade, B. J., 2006, Orogen response to changes in climatic and tectonic forcing: Earth and Planetary Science Letters, v. 243, p. 218–228, doi:10.1016/j.epsl.2005.12.022.
    OpenUrlCrossRefGeoRefWeb of Science
  97. ↵
    Whipple K., Kirby, E., and Brocklehurst, S. H., 1999, Geomorphic limits to climatically-induced increases in topographic relief: Nature, v. 401, p. 39–43, doi:10.1038/43375.
    OpenUrlCrossRefGeoRefWeb of Science
  98. ↵
    Willett S., Beaumont, C., and Fullsack, P., 1993, Mechanical model for the tectonics of doubly vergent compressional orogens: Geology, v. 21, p. 371–374, doi:10.1130/0091-7613(1993)021<0371:MMFTTO>2.3.CO;2.
    OpenUrlAbstract/FREE Full Text
  99. ↵
    Witmer J. W., Ridgway, K. D., Enkelmann, E., Brennan, P., and Valencia, V. A., 2009, Deposition, Provenance and Exhumation of Neogene Strata at the Syntaxis of the Chugach–St. Elias Range, southeast Alaska: GSA Annual Meeting, Portland, Abstract N. 108–25.
  100. ↵
    Yamada R., Tagami, T., Nishimura, S., and Ito, H., 1995, Annealing kinetics of fission tracks in zircon: an experimental study: Chemical Geology, v. 122, p. 249–258, doi:10.1016/0009-2541(95)00006-8.
    OpenUrlCrossRefGeoRefWeb of Science
  101. ↵
    Zeitler P. K., 2004, Arvert 4.0.1. Inversion of 40Ar/39Ar age spectra: User's Manual, http://www.ees.lehigh.edu/EESdocs/geochron/downloads/arvert401guide-US.pdf.
  102. ↵
    Zeitler P. K., Koons, P. O., Bishop, M. P., Chamberlain, C. P., Craw, D., Edwards, M. A., Hamidullah, S., Jan, M. Q., Khan, M. A., Khattak, M. U. K., Kidd, W. S. F., Mackie, R. L., Meltzer, A. S., Park, S. K., Pecher, A., Poage, M. A. Sarker, G., Schneider, D. A., Seeber, L., and Shroder, J. F., 2001, Crustal reworking at Nanga Parbat, Pakistan: Metamorphic consequences of thermal-mechanical coupling facilitated by erosion: Tectonics, v. 20, p. 712–728, doi:10.1029/2000TC001243.
    OpenUrlCrossRefGeoRefWeb of Science
  103. ↵
    Zweck C., Freymueller, J. T., and Cohen, S. C., 2002, Three-dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake: Journal of Geophysical Research, v. 107, B4, 2064, doi:10.1029/2001JB000409.
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

American Journal of Science
Vol. 310, Issue 4
April 2010
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The thermochronological record of tectonic and surface process interaction at the Yakutat–North American collision zone in southeast Alaska
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The thermochronological record of tectonic and surface process interaction at the Yakutat–North American collision zone in southeast Alaska
E. Enkelmann, P. K. Zeitler, J. I. Garver, T. L. Pavlis, B. P. Hooks
American Journal of Science Apr 2010, 310 (4) 231-260; DOI: 10.2475/04.2010.01

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The thermochronological record of tectonic and surface process interaction at the Yakutat–North American collision zone in southeast Alaska
E. Enkelmann, P. K. Zeitler, J. I. Garver, T. L. Pavlis, B. P. Hooks
American Journal of Science Apr 2010, 310 (4) 231-260; DOI: 10.2475/04.2010.01
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • BACKGROUND
    • OBSERVATIONS: THERMOCHRONOLOGY IN SOUTHEAST ALASKA
    • DISCUSSION
    • CONCLUSIONS
    • APPENDIX
    • Acknowledgments
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Detrital zircon ages indicate an Early Cretaceous episode of blueschist-facies metamorphism in southern Alaska: Implications for the Mesozoic paleogeography of the northern Cordillera
  • Upper-crustal cooling of the Wrangellia composite terrane in the northern St. Elias Mountains, western Canada
  • Provenance signature of changing plate boundary conditions along a convergent margin: Detrital record of spreading-ridge and flat-slab subduction processes, Cenozoic forearc basins, Alaska
  • Tectonics and Structure of the Queen Charlotte Fault Zone, Haida Gwaii, and Large Thrust Earthquakes
  • Velocity Structure of the Saint Elias, Alaska, Region from Local Earthquake Tomography
  • A thermochronometric view into an ancient landscape: Tectonic setting, development, and inversion of the Paleozoic eastern Paganzo basin, Argentina
  • Examination of the interplay between glacial processes and exhumation in the Saint Elias Mountains, Alaska
  • Plate margin deformation and active tectonics along the northern edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska, and Yukon, Canada
  • Structure of the actively deforming fold-thrust belt of the St. Elias orogen with implications for glacial exhumation and three-dimensional tectonic processes
  • Miocene basin development and volcanism along a strike-slip to flat-slab subduction transition: Stratigraphy, geochemistry, and geochronology of the central Wrangell volcanic belt, Yakutat-North America collision zone
  • Structural relationships in the eastern syntaxis of the St. Elias orogen, Alaska
  • Antislope scarps, gravitational spreading, and tectonic faulting in the western Yakutat microplate, south coastal Alaska
  • Tectonic and climatic influence on the evolution of the Surveyor Fan and Channel system, Gulf of Alaska
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2022 American Journal of Science

Powered by HighWire