Research ArticleARTICLES
MAGic: A Phanerozoic Model for the Geochemical Cycling of Major Rock-Forming Components
Rolf S. Arvidson, Fred T. Mackenzie and Michael Guidry
American Journal of Science March 2006, 306 (3) 135-190; DOI: https://doi.org/10.2475/ajs.306.3.135
Rolf S. Arvidson
Fred T. Mackenzie

REFERENCES
- ↵Alt J. C., and Teagle, D. A. H., 1999, The uptake of CO2 during alteration of ocean crust: Geochimica et Cosmochimica Acta, v. 63, p. 1527–1535.
- ↵
- ↵––––1999, The dolomite problem: control of precipitation kinetics by temperature and saturation state: American Journal of Science, v. 299, p. 257–288.
- ↵Arvidson R. S., Mackenzie, F. T., and Guidry, M. W., 2000, Ocean/atmosphere history and carbonate precipitation rates: a solution to the “dolomite problem”?, in Glenn, C. R., Prévôt-Lucas, L., and Lucas, J., editors, Marine Authigenesis: From Global to Microbial: S.E.P.M. Special Publication No. 65, p. 1–5.
- ↵––––2006, The control of Phanerozoic atmosphere and seawater composition by basalt–seawater exchange reactions: Journal of Geochemical Exploration, v. 88, p. 412–415.
- ↵Berner R. A., 1991, A model for atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 291, p. 339–376.
- ↵––––1994, GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 294, p. 56–91.
- ↵––––1998, The carbon cycle and CO2 over Phanerozoic time: the role of land plants: Philosophical Transactions of the Royal Society of London, Series B, v. 353, p. 75–82.
- ↵
- ↵––––2001, Modeling atmospheric oxygen over Phanerozoic time: Geochimica et Cosmochimica Acta, v. 65, p. 685–694.
- ↵––––2004, The Phanerozoic carbon cycle: CO2 and O2: New York, Oxford University Press, 158 p.
- ↵Berner R. A., and Canfield, D. E., 1989, A new model for atmospheric oxygen over Phanerozoic time: American Journal of Science, v. 289, p. 333–361.
- ↵Berner R. A., and Kothavala, Z., 2001, GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 301, p. 182–204.
- ↵Berner R. A., Lasaga, A. C., and Garrels, R. M., 1983, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years: American Journal of Science, v. 283, p. 641–683.
- ↵Berner R. A., Petsch, S. T., Lake, J. A., Beerling, D. J., Popp, B. N., Lane, R. S., Laws, E. A., Westley, M. B., Cassar, N., Woodward, F. I., and Quick, W. P., 2000, Isotope fractionation and atmospheric oxygen: Implications for Phanerozoic O2 evolution: Science, v. 287, p. 1630–1633.
- ↵Berner R. A., Beerling, D. J., Dudley, R., Robinson, J. M., and Wildman, R. A., Jr., 2003, Phanerozoic atmospheric oxygen: Annual Review of Earth and Planetary Sciences, v. 31, p. 105–134.
- ↵Boss S. K., and Wilkinson, B. H., 1991, Planktogenic/eustatic control of cratonic/oceanic carbonate accumulation: Journal of Geology, v. 99, p. 497–513.
- ↵Budyko O. M. I., Ronov, A. B., and Yanshin, A. L., 1987, History of the Earth’s Atmosphere, translated from Russian by Lemeshko, S. F., and Yanuta, V. G.: Berlin, Springer-Verlag, 139 p.
- ↵Canfield D. E., 1991, Sulfate reduction in deep-sea sediments: American Journal of Science, v. 291, p. 177–188.
- ↵Compton J. S., Mallinson, D. J., Glenn, C. R., Filippelli, G., Follmi, K., Shields, G., and Zanin, Y., 2000, Variations in the global phosphorus cycle, in Glenn, C. R., Prévôt-Lucas, L., and Lucas, J., editors, Marine Authigenesis: From global to microbial: Society of Sedimentary Geology, v. 66, p. 21–33.
- ↵Dickson A. G., and Millero, F. J., 1987, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media: Deep-Sea Research, v. 34, p. 1733–43.
- ↵Dickson J. A. D., 2002, Fossil echinoderms as monitor of the Mg/Ca Ratio of Phanerozoic oceans: Science, v. 298, p. 1222–1224.
- ↵Drever J. I., 1971, Magnesium-Iron replacement in clay minerals in anoxic marine sediments: Science, v. 172, p. 1334–1336.
- ↵
- ↵Gaffin S., 1987, Ridge volume dependence on sea-floor generation rate and inversion using long-term sea-level change: American Journal of Science, v. 287, p. 596–611.
- ↵Garrels R. M., 1965, Silica: Role in buffering of natural waters: Science, v. 148, p. 69.
- ↵Garrels R. M., and Mackenzie, F. T., 1971, Evolution of Sedimentary Rocks: New York, W.W. Norton and Company, 397 p.
- ↵
- ↵Garrels R. M., and Perry, E. A., Jr., 1974, Cycling of carbon, sulfur and oxygen through geologic time, in Goldberg, E. D., editor, The Sea: New York, Wiley-Interscience, v. 5, p. 303–316.
- ↵Given R. K., and Wilkinson, B. H., 1987, Dolomite abundance and stratigraphic age-constraints on rates and mechanisms of dolomite formation: Journal of Sedimentary Petrology, v. 57, p. 1068–1078.
- ↵Gregor C. B., Garrels, R. M., Mackenzie, F. T., and Maynard, J. B., 1988, Chemical Cycles in the Evolution of the Earth: New York, John Wiley and Sons, 276 p.
- ↵Guidry M. W., Arvidson, R. S., and Mackenzie, F. T., 2006, Carbonate-silicate biogeochemical cycle: Relevance to seawater, atmosphere and carbonate precipitate composition during the Phanerozoic, in Falkowski, P., and Knoll, A., editors, Evolution of Primary Producers of the Sea: San Diego, Academic Press.
- ↵Hansen K. W., and Wallmann, K., 2003, Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: A model perspective: American Journal of Science, v. 303, p. 94–148.
- ↵Hardie L. A., 1996, Secular variations in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y.: Geology, v. 24, p. 279–283.
- ↵He S., and Morse, J. W., 1993, The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0 to 90°C: Geochimica et Cosmochimica Acta, v. 57, p. 3533–3555.
- ↵Holland H. D., 1984, The geochemical evolution of atmosphere and oceans: Princeton, Princeton University Press, 582 p.
- Holland H. D., and Zimmerman, H., 2000, The dolomite problem revisited: International Geology Review, v. 42, p. 481–490.
- ↵Holser W. T., 1984, Gradual and abrupt shifts in ocean chemistry during Phanerozoic time, in Holland, H. D., and Trendall, A. F., editors., Patterns of Change in Earth Evolution: Berlin, Dahlem Konferenzen, Springer-Verlag, p. 123–143.
- ↵Horita J., Zimmermann, H., and Holland, H. D., 2002, Chemical evolution of seawater during the Phanerozoic –Implications from the record of marine evaporates: Geochimica et Cosmochimica Acta, v. 66, p. 3733–3756.
- ↵Hutcheon I., Oldershaw, A., and Ghent, E. D., 1980, Diagenesis of Cretaceous sandstones of the Kootenay Formation at Elk Valley (southeastern British Columbia) and Mt. Allan (southwestern Alberta): Geochimica et Cosmochimica Acta, v. 44, p. 1425–35.
- ↵Lasaga A. C., 1981, Dynamic treatment of geochemical cycles: Global Kinetics, in Lasaga, A. C., and Kirkpatrick, R. J., editors, Kinetics of Geochemical Processes: Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, v. 8, p. 69–109.
- ↵Lasaga A. C., Berner, R. A., and Garrels, R. M., 1985, An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years, in Sundquist, E. T., and Broecker, W. S., editors, The Carbon Cycle and Atmospheric CO2: Natural variations Archean to Present: American Geophysical Union, Geophysical Monograph, v. 32, p. 397–411.
- ↵Lécuyer C., and Ricard, Y., 1999, Long-term fluxes and budget of ferric iron: implications for the redox state of Earth mantle and atmosphere: Earth and Planetary Science Letters, v. 165, p. 197–211.
- ↵Lowenstein T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V., 2001, Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions: Science, v. 294, p. 1086–1088.
- Lowenstein T. K., Hardie, L. A., Timofeeff, M. N., and Demicco, R. V., 2003, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines: Geology, v. 31, p. 857–860.
- ↵Mackenzie F. T., 1992, Chemical mass balance between rivers and oceans: Encyclopedia of Earth System Science, v. 1: New York, Academic Press, p. 431–445.
- ↵
- ↵––––1966b, Silica-bicarbonate balance in the ocean and early diagenesis: Journal of Sedimentary Petrology, v. 36, p. 1075–1084.
- ↵Mackenzie F. T., and Lerman, A., 2006, Carbon in the Geobiosphere—Earth’s Outer Shell: Berlin, Springer, 325 p.
- ↵Mackenzie F. T., and Morse, J. W., 1992, Sedimentary carbonates through Phanerozoic time: Geochimica et Cosmochimica Acta, v. 56, p. 3281–3295.
- ↵Mackenzie F. T., and Pigott, J. D., 1981, Tectonic controls of Phanerozoic sedimentary rock cycling: Journal of the Geological Society, v. 138, p. 183–196.
- ↵Mackenzie F. T., Ristvet, B. L., Thorsetenson, D. C., Lerman, A., and Leeper, R. H., 1981, Reverse weathering and chemical mass balance in a coastal environment, in Marten, J. M., Burton, J. D., and Eisma, D., editors, River Inputs to Ocean systems: Switzerland, UNEP and UNESCO, p. 152–187.
- ↵Martin R. E., 1996, Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere: Palaios, v. 11, p. 209–219.
- ↵Martin W. R., and Sayles, F. L., 1994, Seafloor diagenetic fluxes: Material Fluxes on the Surface of the Earth, Board on Earth Sciences and Resources Commission on Geosciences, Environment, and Resources: National Resource Council, National Academy Press, p. 143–163.
- ↵Meybeck M., 1979, Pathways of major elements from land to ocean through river: Rome, Food and Agricultural Organization of the United Nations, Review and Workshop on River Inputs to Ocean Systems, p. 18–30.
- ↵Michalopoulos P., and Aller, R. C., 1995, Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles: Science, v. 270, p. 614–617.
- ↵Mottl M. J., and Holland, H. D., 1978, Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater: Geochimica et Cosmochimica Acta, v. 42, p. 1103–1115.
- ↵Pearson P. N., and Palmer, M. R., 2000, Atmospheric carbon dioxide concentrations over the past 60 million years: Nature, v. 406, p. 695–699.
- ↵Pitzer K. S., 1973, Thermodynamics of electrolytes - I. Theoretical basis and general equations: Journal of Physical Chemistry, v. 77, p. 268–277.
- Retallack G. J., 2001, A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles: Nature, v. 411, p. 287–290.
- ↵Ronov A. B., 1982, The Earth’s Sedimentary Shell: Quantitative patterns of its structure, compositions, and evolution: The 20th Vernadskiy Lecture v. I, in Yaroshevskiy, A. A., editor, The Earth’s Sedimentary Shell: Moscow, Nauka, p. 1–80; also, American Geological Institute Reprint Series, v. 5, p. 1–73.
- ↵Rothman D. H., 2001, Global biodiversity and the ancient carbon cycle: Proceedings of the National Academy of Sciences, v. 98, p. 4305–4310.
- ↵––––2002, Atmospheric carbon dioxide levels for the last 500 millions years: Proceedings of the National Academy of Sciences, v. 99, p. 4167–4171.
- ↵Rowley D., 2002, Rate of plate creation and destruction: 180 Ma to present: GSA Bulletin, v. 114, p. 927–933.
- ↵Russell K. L., 1970, Geochemistry and halmyrolysis of clay minerals, Rio Ameca, Mexico: Geochimica et Cosmochimica Acta, v. 34, p. 893–907.
- ↵Schrag D., 2002, Control of atmospheric CO2 and climate through Earth history: Goldschmidt Conference Abstracts, p. A688.
- ↵
- ↵Smith S. V., and Hollibaugh, J. T., 1997, Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment: Ecological Monographs, v. 67, p. 509–533.
- ↵
- ↵Stanley S. M., and Hardie, L. A., 1998, Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry: Palaeogeography, Palaeoclimatology, and Palaeoecology, v. 144, p. 3–19.
- ↵––––1999, Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology: GSA Today, v. 9, p. 2–7.
- ↵Stoffyn-Egli P., 1982, Dissolved aluminum in interstitial waters of recent terrigenous marine sediments from the North Atlantic Ocean: Geochimica et Cosmochimica Acta, v. 46, p. 1345–1352.
- ↵Tyrrell T., 1999, The relative influence of nitrogen and phosphorus on oceanic primary production: Nature, v. 400, p. 525–531.
- ↵Tyrrell T., and Zeebe, R. E., 2004, History of carbonate ion concentration over the last 100 million years: Geochimica et Cosmochimica Acta, v. 68, p. 3521–3530.
- ↵Van Cappellen P., and Ingall, E. D., 1996, Redox stabilization of the atmosphere and oceans by phosphorous-limited marine productivity: Science, v. 271, p. 493–496.
- ↵
- ↵
- ↵Walker L. J., Wilkinson, B. H., and Ivany, L. C., 2002, Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings: Journal of Geology, v. 110, p. 75–87.
- ↵Wallmann K., 2001, Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate: Geochimica et Cosmochimica Acta, v. 65, p. 3005–3025.
- ↵Wilkinson B. H., and Walker, J. C. G., 1989, Phanerozoic cycling of sedimentary carbonate: American Journal of Science, v. 289, p. 525–548.
- ↵Wollast R., and Mackenzie, F. T., 1983, The global cycle of silica, in Ashton, S. R., editor, Silicon Geochemistry and Biogeochemistry: New York, Academic Press, p. 39–76.
- ↵Veizer J., and Mackenzie, F. T., 2004, Evolution of sedimentary rocks, in Mackenzie, F. T., editor, Sediments, Diagenesis, and Sedimentary Rocks: Oxford, Elsevier-Pergamon, Treatise on Geochemistry, v. 7, p. 369–407.
- ↵Zeebe R. E., 2001, Seawater pH and isotopic paleotemperatures of Cretaceous oceans: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, p. 49–57.
In this issue
American Journal of Science
Vol. 306, Issue 3
March 2006
MAGic: A Phanerozoic Model for the Geochemical Cycling of Major Rock-Forming Components
Rolf S. Arvidson, Fred T. Mackenzie, Michael Guidry
American Journal of Science Mar 2006, 306 (3) 135-190; DOI: 10.2475/ajs.306.3.135
Jump to section
Related Articles
- No related articles found.
Cited By...
- Reconciling atmospheric CO2, weathering, and calcite compensation depth across the Cenozoic
- Ocean and Atmosphere Geochemical Proxies Derived from Trace Elements in Marine Pyrite: Implications for Ore Genesis in Sedimentary Basins
- A Pleistocene ice core record of atmospheric O2 concentrations
- Long-term climate forcing by atmospheric oxygen concentrations
- Environmental changes in the Late Ordovician-early Silurian: Review and new insights from black shales and nitrogen isotopes
- Section 3. Introduction to the Geochemical Evolution of the Earth's Ecosphere
- Section 6. Deep Time: Modelling of Atmospheric CO2 and the Marine CO2-Carbonic Acid-Carbonate System
- Section 4. Deep Time: Observational Evidence from the Sedimentary Rock Record
- Section 7. Synthesis of Ocean-Atmosphere-Carbonate Sediment Evolution During the Phanerozoic
- Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity
- Influences of alkalinity and pCO2 on CaCO3 nucleation from estimated Cretaceous composition seawater representative of "calcite seas"
- Controls on carbonate skeletal mineralogy: Global CO2 evolution and mass extinctions
- Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model
- Regulating continent growth and composition by chemical weathering
- Chemostatic modes of the ocean-atmosphere-sediment system through Phanerozoic time
- Comment: MAGic: A phanerozoic model for the geochemical cycling of major rock-forming components: (Comment on "MAGic: A Phanerozoic model for the geochemical cycling of major rock-forming components" by Rolf S. Arvidson, Fred T. Mackenzie and Michael Guidry, American Journal of Science, v. 306, p. 135 190.)
- Comment: Mesozoic Atmospheric Oxygen: (Comment on "MAGic: A phanerozoic model for the geochemical cycling of major rock-forming components" by Rolf S. Arvidson, Fred T. Mackenzie and Michael Guidry, American Journal of Science, v. 306, p. 135-190.)
- Reply
- The Weathering of Sedimentary Organic Matter as a Control on Atmospheric O2: II. Theoretical Modeling