Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Journal of Science
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
American Journal of Science

Advanced Search

  • Home
  • Content
    • Current
    • Archive
    • Special Volumes and Special Issue
  • Subscriptions
    • Subscribers
    • FAQ
    • Terms & Conditions for use of AJS Online
  • Instructions to Authors
    • Focus and paper options
    • Submit your manuscript
  • Site Features
    • Alerts
    • Feedback
    • Usage Statistics
    • RSS
  • About Us
    • Editorial Board
    • The Journal
  • Follow ajs on Twitter
  • Visit ajs on Facebook
  • Follow ajs on Instagram
Research ArticleARTICLES

MAGic: A Phanerozoic Model for the Geochemical Cycling of Major Rock-Forming Components

Rolf S. Arvidson, Fred T. Mackenzie and Michael Guidry
American Journal of Science March 2006, 306 (3) 135-190; DOI: https://doi.org/10.2475/ajs.306.3.135
Rolf S. Arvidson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fred T. Mackenzie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Guidry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    Alt J. C., and Teagle, D. A. H., 1999, The uptake of CO2 during alteration of ocean crust: Geochimica et Cosmochimica Acta, v. 63, p. 1527–1535.
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    Arvidson R. S., and Mackenzie, F. T., 1997, Tentative kinetic model for dolomite precipitation rate: Aquatic Geochemistry, v. 2, p. 273–298.
    OpenUrlCrossRefGeoRef
  3. ↵
    ––––1999, The dolomite problem: control of precipitation kinetics by temperature and saturation state: American Journal of Science, v. 299, p. 257–288.
    OpenUrlAbstract/FREE Full Text
  4. ↵
    Arvidson R. S., Mackenzie, F. T., and Guidry, M. W., 2000, Ocean/atmosphere history and carbonate precipitation rates: a solution to the “dolomite problem”?, in Glenn, C. R., Prévôt-Lucas, L., and Lucas, J., editors, Marine Authigenesis: From Global to Microbial: S.E.P.M. Special Publication No. 65, p. 1–5.
  5. ↵
    ––––2006, The control of Phanerozoic atmosphere and seawater composition by basalt–seawater exchange reactions: Journal of Geochemical Exploration, v. 88, p. 412–415.
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    Berner R. A., 1991, A model for atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 291, p. 339–376.
    OpenUrlAbstract/FREE Full Text
  7. ↵
    ––––1994, GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 294, p. 56–91.
    OpenUrlAbstract/FREE Full Text
  8. ↵
    ––––1998, The carbon cycle and CO2 over Phanerozoic time: the role of land plants: Philosophical Transactions of the Royal Society of London, Series B, v. 353, p. 75–82.
    OpenUrlAbstract/FREE Full Text
  9. ↵
    ––––1999, A new look at the long term carbon cycle: GSA Today, v. 9, p. 1–6.
    OpenUrlGeoRef
  10. ↵
    ––––2001, Modeling atmospheric oxygen over Phanerozoic time: Geochimica et Cosmochimica Acta, v. 65, p. 685–694.
    OpenUrlCrossRefGeoRefWeb of Science
  11. ↵
    ––––2004, The Phanerozoic carbon cycle: CO2 and O2: New York, Oxford University Press, 158 p.
  12. ↵
    Berner R. A., and Canfield, D. E., 1989, A new model for atmospheric oxygen over Phanerozoic time: American Journal of Science, v. 289, p. 333–361.
    OpenUrlAbstract/FREE Full Text
  13. ↵
    Berner R. A., and Kothavala, Z., 2001, GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 301, p. 182–204.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    Berner R. A., Lasaga, A. C., and Garrels, R. M., 1983, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years: American Journal of Science, v. 283, p. 641–683.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    Berner R. A., Petsch, S. T., Lake, J. A., Beerling, D. J., Popp, B. N., Lane, R. S., Laws, E. A., Westley, M. B., Cassar, N., Woodward, F. I., and Quick, W. P., 2000, Isotope fractionation and atmospheric oxygen: Implications for Phanerozoic O2 evolution: Science, v. 287, p. 1630–1633.
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  16. ↵
    Berner R. A., Beerling, D. J., Dudley, R., Robinson, J. M., and Wildman, R. A., Jr., 2003, Phanerozoic atmospheric oxygen: Annual Review of Earth and Planetary Sciences, v. 31, p. 105–134.
    OpenUrlCrossRefGeoRefWeb of Science
  17. ↵
    Boss S. K., and Wilkinson, B. H., 1991, Planktogenic/eustatic control of cratonic/oceanic carbonate accumulation: Journal of Geology, v. 99, p. 497–513.
    OpenUrlGeoRefWeb of Science
  18. ↵
    Budyko O. M. I., Ronov, A. B., and Yanshin, A. L., 1987, History of the Earth’s Atmosphere, translated from Russian by Lemeshko, S. F., and Yanuta, V. G.: Berlin, Springer-Verlag, 139 p.
  19. ↵
    Canfield D. E., 1991, Sulfate reduction in deep-sea sediments: American Journal of Science, v. 291, p. 177–188.
    OpenUrlAbstract/FREE Full Text
  20. ↵
    Compton J. S., Mallinson, D. J., Glenn, C. R., Filippelli, G., Follmi, K., Shields, G., and Zanin, Y., 2000, Variations in the global phosphorus cycle, in Glenn, C. R., Prévôt-Lucas, L., and Lucas, J., editors, Marine Authigenesis: From global to microbial: Society of Sedimentary Geology, v. 66, p. 21–33.
    OpenUrl
  21. ↵
    Dickson A. G., and Millero, F. J., 1987, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media: Deep-Sea Research, v. 34, p. 1733–43.
    OpenUrl
  22. ↵
    Dickson J. A. D., 2002, Fossil echinoderms as monitor of the Mg/Ca Ratio of Phanerozoic oceans: Science, v. 298, p. 1222–1224.
    OpenUrlAbstract/FREE Full Text
  23. ↵
    Drever J. I., 1971, Magnesium-Iron replacement in clay minerals in anoxic marine sediments: Science, v. 172, p. 1334–1336.
    OpenUrlAbstract/FREE Full Text
  24. ↵
    Engebretson D. C., Kelley, K. P., Cashman, H. J., and Richards, M. R., 1992, 180 Million years of subduction: GSA Today, v. 2, p. 93–95.
    OpenUrlGeoRef
  25. ↵
    Gaffin S., 1987, Ridge volume dependence on sea-floor generation rate and inversion using long-term sea-level change: American Journal of Science, v. 287, p. 596–611.
    OpenUrlAbstract/FREE Full Text
  26. ↵
    Garrels R. M., 1965, Silica: Role in buffering of natural waters: Science, v. 148, p. 69.
    OpenUrlAbstract/FREE Full Text
  27. ↵
    Garrels R. M., and Mackenzie, F. T., 1971, Evolution of Sedimentary Rocks: New York, W.W. Norton and Company, 397 p.
  28. ↵
    ––––1972, A quantitative model for the sedimentary rock cycle: Marine Chemistry, v. 1, p. 27–41.
    OpenUrlCrossRefGeoRef
  29. ↵
    Garrels R. M., and Perry, E. A., Jr., 1974, Cycling of carbon, sulfur and oxygen through geologic time, in Goldberg, E. D., editor, The Sea: New York, Wiley-Interscience, v. 5, p. 303–316.
    OpenUrl
  30. ↵
    Given R. K., and Wilkinson, B. H., 1987, Dolomite abundance and stratigraphic age-constraints on rates and mechanisms of dolomite formation: Journal of Sedimentary Petrology, v. 57, p. 1068–1078.
    OpenUrlAbstract/FREE Full Text
  31. ↵
    Gregor C. B., Garrels, R. M., Mackenzie, F. T., and Maynard, J. B., 1988, Chemical Cycles in the Evolution of the Earth: New York, John Wiley and Sons, 276 p.
  32. ↵
    Guidry M. W., Arvidson, R. S., and Mackenzie, F. T., 2006, Carbonate-silicate biogeochemical cycle: Relevance to seawater, atmosphere and carbonate precipitate composition during the Phanerozoic, in Falkowski, P., and Knoll, A., editors, Evolution of Primary Producers of the Sea: San Diego, Academic Press.
  33. ↵
    Hansen K. W., and Wallmann, K., 2003, Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: A model perspective: American Journal of Science, v. 303, p. 94–148.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    Hardie L. A., 1996, Secular variations in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y.: Geology, v. 24, p. 279–283.
    OpenUrlAbstract/FREE Full Text
  35. ↵
    He S., and Morse, J. W., 1993, The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0 to 90°C: Geochimica et Cosmochimica Acta, v. 57, p. 3533–3555.
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    Holland H. D., 1984, The geochemical evolution of atmosphere and oceans: Princeton, Princeton University Press, 582 p.
  37. Holland H. D., and Zimmerman, H., 2000, The dolomite problem revisited: International Geology Review, v. 42, p. 481–490.
    OpenUrlCrossRefGeoRefWeb of Science
  38. ↵
    Holser W. T., 1984, Gradual and abrupt shifts in ocean chemistry during Phanerozoic time, in Holland, H. D., and Trendall, A. F., editors., Patterns of Change in Earth Evolution: Berlin, Dahlem Konferenzen, Springer-Verlag, p. 123–143.
  39. ↵
    Horita J., Zimmermann, H., and Holland, H. D., 2002, Chemical evolution of seawater during the Phanerozoic –Implications from the record of marine evaporates: Geochimica et Cosmochimica Acta, v. 66, p. 3733–3756.
    OpenUrlCrossRefGeoRefWeb of Science
  40. ↵
    Hutcheon I., Oldershaw, A., and Ghent, E. D., 1980, Diagenesis of Cretaceous sandstones of the Kootenay Formation at Elk Valley (southeastern British Columbia) and Mt. Allan (southwestern Alberta): Geochimica et Cosmochimica Acta, v. 44, p. 1425–35.
    OpenUrlCrossRefGeoRefWeb of Science
  41. ↵
    Lasaga A. C., 1981, Dynamic treatment of geochemical cycles: Global Kinetics, in Lasaga, A. C., and Kirkpatrick, R. J., editors, Kinetics of Geochemical Processes: Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, v. 8, p. 69–109.
    OpenUrl
  42. ↵
    Lasaga A. C., Berner, R. A., and Garrels, R. M., 1985, An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years, in Sundquist, E. T., and Broecker, W. S., editors, The Carbon Cycle and Atmospheric CO2: Natural variations Archean to Present: American Geophysical Union, Geophysical Monograph, v. 32, p. 397–411.
    OpenUrl
  43. ↵
    Lécuyer C., and Ricard, Y., 1999, Long-term fluxes and budget of ferric iron: implications for the redox state of Earth mantle and atmosphere: Earth and Planetary Science Letters, v. 165, p. 197–211.
    OpenUrlCrossRefGeoRefWeb of Science
  44. ↵
    Lowenstein T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V., 2001, Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions: Science, v. 294, p. 1086–1088.
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  45. Lowenstein T. K., Hardie, L. A., Timofeeff, M. N., and Demicco, R. V., 2003, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines: Geology, v. 31, p. 857–860.
    OpenUrlAbstract/FREE Full Text
  46. ↵
    Mackenzie F. T., 1992, Chemical mass balance between rivers and oceans: Encyclopedia of Earth System Science, v. 1: New York, Academic Press, p. 431–445.
  47. ↵
    Mackenzie F. T., and Garrels, R. M., 1966a, Chemical mass balance between rivers and oceans: American Journal of Science, v. 264, p. 507–525.
    OpenUrlAbstract
  48. ↵
    ––––1966b, Silica-bicarbonate balance in the ocean and early diagenesis: Journal of Sedimentary Petrology, v. 36, p. 1075–1084.
    OpenUrlAbstract/FREE Full Text
  49. ↵
    Mackenzie F. T., and Lerman, A., 2006, Carbon in the Geobiosphere—Earth’s Outer Shell: Berlin, Springer, 325 p.
  50. ↵
    Mackenzie F. T., and Morse, J. W., 1992, Sedimentary carbonates through Phanerozoic time: Geochimica et Cosmochimica Acta, v. 56, p. 3281–3295.
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    Mackenzie F. T., and Pigott, J. D., 1981, Tectonic controls of Phanerozoic sedimentary rock cycling: Journal of the Geological Society, v. 138, p. 183–196.
    OpenUrlAbstract/FREE Full Text
  52. ↵
    Mackenzie F. T., Ristvet, B. L., Thorsetenson, D. C., Lerman, A., and Leeper, R. H., 1981, Reverse weathering and chemical mass balance in a coastal environment, in Marten, J. M., Burton, J. D., and Eisma, D., editors, River Inputs to Ocean systems: Switzerland, UNEP and UNESCO, p. 152–187.
  53. ↵
    Martin R. E., 1996, Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere: Palaios, v. 11, p. 209–219.
    OpenUrlAbstract/FREE Full Text
  54. ↵
    Martin W. R., and Sayles, F. L., 1994, Seafloor diagenetic fluxes: Material Fluxes on the Surface of the Earth, Board on Earth Sciences and Resources Commission on Geosciences, Environment, and Resources: National Resource Council, National Academy Press, p. 143–163.
  55. ↵
    Meybeck M., 1979, Pathways of major elements from land to ocean through river: Rome, Food and Agricultural Organization of the United Nations, Review and Workshop on River Inputs to Ocean Systems, p. 18–30.
  56. ↵
    Michalopoulos P., and Aller, R. C., 1995, Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles: Science, v. 270, p. 614–617.
    OpenUrlAbstract/FREE Full Text
  57. ↵
    Mottl M. J., and Holland, H. D., 1978, Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater: Geochimica et Cosmochimica Acta, v. 42, p. 1103–1115.
    OpenUrlCrossRefGeoRefWeb of Science
  58. ↵
    Pearson P. N., and Palmer, M. R., 2000, Atmospheric carbon dioxide concentrations over the past 60 million years: Nature, v. 406, p. 695–699.
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  59. ↵
    Pitzer K. S., 1973, Thermodynamics of electrolytes - I. Theoretical basis and general equations: Journal of Physical Chemistry, v. 77, p. 268–277.
    OpenUrlCrossRefWeb of Science
  60. Retallack G. J., 2001, A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles: Nature, v. 411, p. 287–290.
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  61. ↵
    Ronov A. B., 1982, The Earth’s Sedimentary Shell: Quantitative patterns of its structure, compositions, and evolution: The 20th Vernadskiy Lecture v. I, in Yaroshevskiy, A. A., editor, The Earth’s Sedimentary Shell: Moscow, Nauka, p. 1–80; also, American Geological Institute Reprint Series, v. 5, p. 1–73.
    OpenUrl
  62. ↵
    Rothman D. H., 2001, Global biodiversity and the ancient carbon cycle: Proceedings of the National Academy of Sciences, v. 98, p. 4305–4310.
    OpenUrlAbstract/FREE Full Text
  63. ↵
    ––––2002, Atmospheric carbon dioxide levels for the last 500 millions years: Proceedings of the National Academy of Sciences, v. 99, p. 4167–4171.
    OpenUrlAbstract/FREE Full Text
  64. ↵
    Rowley D., 2002, Rate of plate creation and destruction: 180 Ma to present: GSA Bulletin, v. 114, p. 927–933.
    OpenUrlAbstract/FREE Full Text
  65. ↵
    Russell K. L., 1970, Geochemistry and halmyrolysis of clay minerals, Rio Ameca, Mexico: Geochimica et Cosmochimica Acta, v. 34, p. 893–907.
    OpenUrlCrossRefGeoRefWeb of Science
  66. ↵
    Schrag D., 2002, Control of atmospheric CO2 and climate through Earth history: Goldschmidt Conference Abstracts, p. A688.
  67. ↵
    Shaviv N. J., and Veizer, J., 2003, Celestial driver of Phanerozoic climate?: GSA Today, v. 13, p. 4–10.
    OpenUrlCrossRefGeoRef
  68. ↵
    Smith S. V., and Hollibaugh, J. T., 1997, Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment: Ecological Monographs, v. 67, p. 509–533.
    OpenUrlCrossRefWeb of Science
  69. ↵
    Smith S. V., and Mackenzie, F. T., 1987, The ocean as a net heterotrophic system: Implications from the carbon biogeochemical cycle: Global Biogeochemical Cycles, v. 1, p. 187–198.
    OpenUrlGeoRef
  70. ↵
    Stanley S. M., and Hardie, L. A., 1998, Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry: Palaeogeography, Palaeoclimatology, and Palaeoecology, v. 144, p. 3–19.
    OpenUrlCrossRefGeoRefWeb of Science
  71. ↵
    ––––1999, Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology: GSA Today, v. 9, p. 2–7.
    OpenUrl
  72. ↵
    Stoffyn-Egli P., 1982, Dissolved aluminum in interstitial waters of recent terrigenous marine sediments from the North Atlantic Ocean: Geochimica et Cosmochimica Acta, v. 46, p. 1345–1352.
    OpenUrlCrossRefGeoRefWeb of Science
  73. ↵
    Tyrrell T., 1999, The relative influence of nitrogen and phosphorus on oceanic primary production: Nature, v. 400, p. 525–531.
    OpenUrlCrossRefGeoRefWeb of Science
  74. ↵
    Tyrrell T., and Zeebe, R. E., 2004, History of carbonate ion concentration over the last 100 million years: Geochimica et Cosmochimica Acta, v. 68, p. 3521–3530.
    OpenUrlCrossRefGeoRefWeb of Science
  75. ↵
    Van Cappellen P., and Ingall, E. D., 1996, Redox stabilization of the atmosphere and oceans by phosphorous-limited marine productivity: Science, v. 271, p. 493–496.
    OpenUrlGeoRefPubMedWeb of Science
  76. ↵
    Veizer J., Goddéris, Y., and Francois, L. M., 2000, Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon: Nature, v. 408, p. 698–701.
    OpenUrlCrossRefGeoRef
  77. ↵
    Volk T., 1989, Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial: Nature, v. 337, p. 637–640.
    OpenUrlCrossRefGeoRef
  78. ↵
    Walker L. J., Wilkinson, B. H., and Ivany, L. C., 2002, Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings: Journal of Geology, v. 110, p. 75–87.
    OpenUrlCrossRefGeoRefWeb of Science
  79. ↵
    Wallmann K., 2001, Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate: Geochimica et Cosmochimica Acta, v. 65, p. 3005–3025.
    OpenUrlCrossRefGeoRefWeb of Science
  80. ↵
    Wilkinson B. H., and Walker, J. C. G., 1989, Phanerozoic cycling of sedimentary carbonate: American Journal of Science, v. 289, p. 525–548.
    OpenUrlAbstract/FREE Full Text
  81. ↵
    Wollast R., and Mackenzie, F. T., 1983, The global cycle of silica, in Ashton, S. R., editor, Silicon Geochemistry and Biogeochemistry: New York, Academic Press, p. 39–76.
  82. ↵
    Veizer J., and Mackenzie, F. T., 2004, Evolution of sedimentary rocks, in Mackenzie, F. T., editor, Sediments, Diagenesis, and Sedimentary Rocks: Oxford, Elsevier-Pergamon, Treatise on Geochemistry, v. 7, p. 369–407.
    OpenUrl
  83. Yapp C. J., and Poths, H., 1992, Ancient atmospheric CO2 pressures inferred from natural goethites: Nature, v. 355, p. 342–244.
    OpenUrlCrossRefGeoRef
  84. ↵
    Zeebe R. E., 2001, Seawater pH and isotopic paleotemperatures of Cretaceous oceans: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, p. 49–57.
    OpenUrl
PreviousNext
Back to top

In this issue

American Journal of Science
Vol. 306, Issue 3
March 2006
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Ed Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MAGic: A Phanerozoic Model for the Geochemical Cycling of Major Rock-Forming Components
(Your Name) has sent you a message from American Journal of Science
(Your Name) thought you would like to see the American Journal of Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
MAGic: A Phanerozoic Model for the Geochemical Cycling of Major Rock-Forming Components
Rolf S. Arvidson, Fred T. Mackenzie, Michael Guidry
American Journal of Science Mar 2006, 306 (3) 135-190; DOI: 10.2475/ajs.306.3.135

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
MAGic: A Phanerozoic Model for the Geochemical Cycling of Major Rock-Forming Components
Rolf S. Arvidson, Fred T. Mackenzie, Michael Guidry
American Journal of Science Mar 2006, 306 (3) 135-190; DOI: 10.2475/ajs.306.3.135
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MODEL ORGANIZATION
    • MODEL RESULTS AND DISCUSSION
    • CONCLUSIONS
    • APPENDIX A
    • Acknowledgments
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Reconciling atmospheric CO2, weathering, and calcite compensation depth across the Cenozoic
  • Ocean and Atmosphere Geochemical Proxies Derived from Trace Elements in Marine Pyrite: Implications for Ore Genesis in Sedimentary Basins
  • A Pleistocene ice core record of atmospheric O2 concentrations
  • Long-term climate forcing by atmospheric oxygen concentrations
  • Environmental changes in the Late Ordovician-early Silurian: Review and new insights from black shales and nitrogen isotopes
  • Section 3. Introduction to the Geochemical Evolution of the Earth's Ecosphere
  • Section 6. Deep Time: Modelling of Atmospheric CO2 and the Marine CO2-Carbonic Acid-Carbonate System
  • Section 4. Deep Time: Observational Evidence from the Sedimentary Rock Record
  • Section 7. Synthesis of Ocean-Atmosphere-Carbonate Sediment Evolution During the Phanerozoic
  • Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity
  • Influences of alkalinity and pCO2 on CaCO3 nucleation from estimated Cretaceous composition seawater representative of "calcite seas"
  • Controls on carbonate skeletal mineralogy: Global CO2 evolution and mass extinctions
  • Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model
  • Regulating continent growth and composition by chemical weathering
  • Chemostatic modes of the ocean-atmosphere-sediment system through Phanerozoic time
  • Comment: MAGic: A phanerozoic model for the geochemical cycling of major rock-forming components: (Comment on "MAGic: A Phanerozoic model for the geochemical cycling of major rock-forming components" by Rolf S. Arvidson, Fred T. Mackenzie and Michael Guidry, American Journal of Science, v. 306, p. 135 190.)
  • Comment: Mesozoic Atmospheric Oxygen: (Comment on "MAGic: A phanerozoic model for the geochemical cycling of major rock-forming components" by Rolf S. Arvidson, Fred T. Mackenzie and Michael Guidry, American Journal of Science, v. 306, p. 135-190.)
  • Reply
  • The Weathering of Sedimentary Organic Matter as a Control on Atmospheric O2: II. Theoretical Modeling
  • Google Scholar

More in this TOC Section

  • Timing and Nd-Hf isotopic mapping of early Mesozoic granitoids in the Qinling Orogen, central China: Implication for architecture, nature and processes of the orogen
  • India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks
  • Unravelling the P-T-t history of three high-grade metamorphic events in the Epupa Complex, NW Namibia: Implications for the Paleoproterozoic to Mesoproterozoic evolution of the Congo Craton
Show more Articles

Similar Articles

Navigate

  • Current Issue
  • Archive

More Information

  • RSS

Other Services

  • About Us

© 2023 American Journal of Science

Powered by HighWire