Research ArticleARTICLES
COPSE: A new model of biogeochemical cycling over Phanerozoic time
Noam M. Bergman, Timothy M. Lenton and Andrew J. Watson
American Journal of Science May 2004, 304 (5) 397-437; DOI: https://doi.org/10.2475/ajs.304.5.397
Noam M. Bergman
Timothy M. Lenton

REFERENCES
- ↵Anderson L. D., Delaney, M. L., and Faul, K. L., 2001, Carbon to phosphorus ratios in sediments: Implications for nutrient cycling: Global Biogeochemical Cycles, v. 15, p. 65–79.
- ↵Beerling D. J., Woodward, F. I., Lomas, M. R., Wills, M. A., Quick, W. P., and Valdes, P. J., 1998, The influence of Carboniferous palaeoatmospheres on plant function: an experimental and modelling assessment: Philosophical Transactions of the Royal Society of London, Biological Sciences, v. 353, p. 131–140.
- ↵Beerling D. J., Lake, J. A., Berner, R. A., Hickey, L. J., Taylor, D. W., and Royer, D. L., 2002, Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere: Geochimica et Cosmochimica Acta, v. 66, p. 3757–3767.
- ↵Bergman N. M., ms, 2003, COPSE: A New Biogeochemical Model for the Phanerozoic: School of Environmental Sciences, Norwich, University of East Anglia, p. 197.
- ↵Berner R. A., 1991, A model for atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 291, p. 339–376.
- ↵–––– 1994, Geocarb II: A revised model of atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 294, p. 56–91.
- ↵–––– 1998, The carbon cycle and CO2 over Phanerozoic time: the role of land plants: Philosophical Transactions of the Royal Society of London: Biological Sciences, v. 353, p. 75–82.
- ↵Berner R. A., and Canfield, D. E., 1989, A new model for atmospheric oxygen over Phanerozoic time: American Journal of Science, v. 289, p. 333–361.
- ↵Berner R. A., and Kothavala, Z., 2001, Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 301, p. 182–204.
- ↵Berner R. A., Lasaga, A. C., and Garrels, R. M., 1983, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years: American Journal of Science, v. 283, p. 641–683.
- ↵Berner R. A., Petsch, S. T., Lake, J. A., Beerling, D. J., Popp, B. N., Lane, R. S., Laws, E. A., Westley, M. B., Cassar, N., Woodward, F. I., and Quick, W. P., 2000, Isotope Fractionation and Atmospheric Oxygen: Implications for Phanerozoic O2 Evolution: Science, v. 287, p. 1630–1633.
- ↵Brennan S. T., and Lowenstein, T. K., 2002, The major-ion composition of Silurian seawater: Geochimica et Cosmochimica Acta, v. 66, p. 2683–2700.
- ↵Burke W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F., and Otto, J. B., 1982, Variation of seawater 87Sr/86Sr throughout Phanerozoic time: Geology, v. 10, p. 516–519.
- ↵
- ↵Cerling T. E., 1991, Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols: American Journal of Science, v. 291, p. 377–400.
- ↵Claypool G. E., Holser, W. T., Kaplan, I. R., Sakai, H., and Zak, I., 1980, The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation: Chemical Geology, v. 28, p. 199–260.
- ↵Colman A. S., Mackenzie, F. T., and Holland, H. D., 1997, Redox Stabilisation of the Atmosphere and Oceans and Marine Productivity: Science, v. 275, p. 406–407.
- ↵Cressler W. L., 2001, Evidence of earliest known wildfires: Palaios, v. 16, p. 171–174.
- ↵Derry L. A., and France-Lanord, C., 1996, Neogene growth of the sedimentary organic carbon reservoir: Paleoceanography, v. 11, p. 267–275.
- ↵Dudley R., 2000, The evolutionary physiology of animal flight: paleobiological and present perspectives: Annual Review of Physiology, v. 62, p. 135–155.
- ↵Ekart D. D., Cerling, T. E., Montañez, I. P., and Tabor, N. J., 1999, A 400 million year carbon isotope record of pedogenic carbonates: implications for paleoatmospheric carbon dioxide: American Journal of Science, v. 299, p. 805–827.
- ↵
- ↵Farquhar G. D., von Caemmerer, S., and Berry, J. A., 1980, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species: Planta, 149, p. 78–90.
- ↵Farquhar G. D., O’Leary, M. H., and Berry, J. A., 1982, On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves: Australian Journal of Plant Physiology, v. 9, p. 121–137.
- ↵Frakes L. A., 1979, Climates Throughout Geologic Time: Amsterdam, Elsevier Scientific Publishing Co., 310 p.
- ↵
- ↵Fridovich I., 1977, Oxygen is Toxic!: BioScience, v. 27, p. 462–466.
- ↵
- ↵Friend A. D., 1998, Appendix: Biochemical modelling of leaf photosynthesis, in Jarvis, P. G., editor, European forests and global change: Cambridge, Cambridge University Press, p. 335–346.
- ↵Friend A. D., Kellomäki, S., and Kruijt, B., 1998, Modelling leaf, tree and forest responses to increasing atmospheric CO2 and temperature, in Jarvis, P. G., editor, European forests and global change: Cambridge, Cambridge University Press, p. 293–334.
- ↵Gaffin S., 1987, Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change: American Journal of Science, v. 287, p. 596–611.
- ↵Garrels R. M., and Lerman, A., 1981, Phanerozoic cycles of sedimentary carbon and sulfur: Proceedings of the National Academy of Sciences USA, v. 78, p. 4652–4656.
- ↵–––– 1984, Coupling of the sedimentary sulfur and carbon cycles - an improved model: American Journal of Science, v. 284, p. 989–1007.
- ↵Garrels R. M., and Perry, E. A., Jr., 1974, Cycling of carbon, sulfur, and oxygen through geologic time, The Sea: New York, Wiley, p. 303–336.
- ↵Guidry M. W., and Mackenzie, F. T., 2000, Apatite weathering and the Phanerozoic phosphorus cycle: Geology, v. 28, p. 631–634.
- ↵Hansen K. W., and Wallmann, K., 2003, Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: A model perspective: American Journal of Science, v. 303, p. 94–148.
- ↵Hardie L. A., 1996, Secular variation in seawater chemistry: an explanation for the coupled secular variations in the mineralogies of marine limestone and potash evaporites over the past 600 m.y.: Geology, v. 24, p. 279–283.
- ↵Hayes J. M., Popp, B. N., Takigiku, R., and Johnson, M. W., 1989, An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation: Geochimica et Cosmochimica Acta, v. 53, p. 2961–2972.
- ↵Hayes J. M., Strauss, H., and Kaufman, A. J., 1999, The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma: Chemical Geology, v. 161, p. 103–125.
- ↵Holland H. D., 1978, The Chemistry of the Atmosphere and Oceans: New York, John Wiley and Sons, 351 p.
- ↵–––– 1984, The Chemical Evolution of the Atmosphere and Oceans: Princeton Series in Geochemistry: Princeton, Princeton University Press, 598 p.
- ↵–––– 2003, Discussion of the article by A. C. Lasaga and H. Ohmoto on “The oxygen geochemical cycle: Dynamics and stability”: Geochimica et Cosmochimica Acta, v. 67, p. 787–789.
- ↵Holser W. T., Schidlowski, M., Mackenzie, F. T., and Maynard, J. B., 1988, Geochemical cycles of carbon and sulfur, in Gregor, C. B., Garrels, R. M., Mackenzie, F. T., and Maynard, J. B., editors, Chemical cycles in the Evolution of the Earth: New York, Wiley-Interscience, p. 105–173.
- Horita J., Zimmermann, H., and Holland, H. D., 2002, Chemical evolution of seawater during the Phanerozoic: Implications for the record of marine evaporites: Geochimica et Cosmochemica Acta, v. 66, p. 3733–3756.
- ↵
- ↵–––– 1993, The coupling of the carbon and sulfur biogeochemical cycles over Phanerozoic time, in Wollast, R., Mackenzie, F. T., and Chou, L., editors, Interactions of C, N, P and S Biogeochemical Cycles and Global Change: NATO ASI: Berlin, Springer-Verlag, p. 475–490.
- ↵Kump L. R., and Garrels, R. M., 1986, Modelling atmospheric O2 in the global sedimentary redox cycle: American Journal of Science, v. 286, p. 337–360.
- ↵Kump L. R., and Mackenzie, F. T., 1996, Regulation of Atmospheric O2: Feedback in the Microbial Feedbag: Science, v. 271, p. 459–460.
- ↵Lasaga A. C., and Ohmoto, H., 2002, The oxygen geochemical cycle: Dynamics and stability: Geochimica et Cosmochimica Acta, v. 66, p. 361–381.
- ↵Lenton T. M., 2001, The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen: Global Change Biology, v. 7, p. 613–629.
- ↵Lenton T. M., and Watson, A. J., 2000a, Redfield revisited: 1. Regulation of nitrate, phosphate and oxygen in the ocean: Global Biogeochemical Cycles, v. 14, p. 225–248.
- ↵–––– 2000b, Redfield revisited: 2. What regulates the oxygen content of the atmosphere?: Global Biogeochemical Cycles, v. 14, p. 249–268.
- ↵McArthur J. M., Howarth, R. J., and Bailey, T. R., 2001, Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age: Journal of Geology, v. 109, p. 155–170.
- ↵McElwain J. C., and Chaloner, W. G., 1995, Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic: Annals of Botany, v. 76, p. 389–395.
- ↵Mook W. G., 1986, 13C in atmospheric CO2: Netherlands Journal of Sea Research, v. 20, p. 211–223.
- ↵
- ↵Morse J. W., Wang, Q., and Tsio, M. Y., 1997, Influences of temperature and Mg: Ca ratio on CaCO3 precipitates from seawater: Geology, v. 25, p. 85–87.
- ↵Pearson P. N., and Palmer, M. R., 2000, Atmospheric carbon dioxide concentrations over the past 60 million years: Nature, v. 406, p. 695–699.
- ↵Petsch S. T., and Berner, R. A., 1998, Coupling the geochemical cycles of C, P, Fe, and S: The effect on atmospheric O2 and the isotopic records of carbon and sulfur: American Journal of Science, v. 298, p. 246–262.
- ↵Popp B. N., Takigiku, R., Hayes, J. M., Louda, J. W., and Baker, E. W., 1989, The post-Paleozoic chronology and mechanism of δ13C depletion in primary marine organic matter: American Journal of Science, v. 289, p. 436–454.
- ↵Raiswell R., and Berner, R. A., 1986, Pyrite and organic matter in Phanerozoic normal marine shales: Geochimica et Cosmochimica Acta, v. 50, p. 1967–1976.
- ↵Raymo M. E., 1997, Carbon Cycle Models: How Strong are the Constraints?, in Ruddiman, W. F., editor, Tectonic Uplift and Climate Change: New York, Plenum Press, p. 367–381.
- ↵Rees C. E., 1970, The sulphur isotope balance of the ocean: an improved model: Earth and Planetary Science Letters, v. 7, p. 366–370.
- ↵Robinson J. M., 1989, Phanerozoic O2 variation, fire, and terrestrial ecology: Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), v. 75, p. 223–240.
- ↵
- ↵Sandberg P. A., 1983, An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy: Nature, v. 305, p. 19–22.
- ↵Stanley S. M., 1999, Earth System History: New York, W. H. Freeman and Company, 615 p.
- ↵Stanley S. M., and Hardie, L. A., 1998, Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry: Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), v. 144, p. 3–19.
- ↵Strauss H., 1999, Geological evolution from isotope proxy signals - sulfur: Chemical Geology, v. 161, p. 89–101.
- ↵Van Cappellen P., and Ingall, E. D., 1994, Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus: Paleoceanography, v. 9, p. 677–692.
- ↵
- ↵Veizer J., Holser, W. T., and Wilgus, C. K., 1980, Correlation of 13C/12C and 34S/32S secular variations: Geochimica et Cosmochimica Acta, v. 44, p. 579–587.
- ↵Veizer J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H., 1999, 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater: Chemical Geology, v. 161, p. 59–88.
- ↵Volk T., 1987, Feedbacks between weathering and atmospheric CO2 over the last 100 million years: American Journal of Science, v. 287, p. 763–779.
- ↵
- ↵Walker J. C. G., Hays, P. B., and Kasting, J. F., 1981, A negative feedback mechanism for the long-term stabilisation of Earth’s surface temperature: Journal of Geophysical Research, v. 86, p. 9776–9782.
- ↵Wallmann K., 2001, Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate: Geochimica et Cosmochimica Acta, v. 65, p. 3005–3025.
- Watson A. J., ms, 1978, Consequences for the Biosphere of Forest and Grassland Fires, Department of Cybernetics: Ph.D. thesis, Reading, United Kingdom, University of Reading, p. 276.
- ↵
In this issue
American Journal of Science
Vol. 304, Issue 5
May 2004
COPSE: A new model of biogeochemical cycling over Phanerozoic time
Noam M. Bergman, Timothy M. Lenton, Andrew J. Watson
American Journal of Science May 2004, 304 (5) 397-437; DOI: 10.2475/ajs.304.5.397
Jump to section
Related Articles
- No related articles found.
Cited By...
- Speciation across the Earth driven by global cooling in orchidoid orchids
- Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity
- Carbon for nutrient exchange between the lycophyte, Lycopodiella inundata and Mucoromycotina 'fine root endophytes is unresponsive to high atmospheric CO2 concentration
- An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction
- The Archean atmosphere
- Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling
- A Novel Hypothesis for the Role of Photosynthetic Physiology in Shaping Macroevolutionary Patterns
- Modeling the consequences of land plant evolution on silicate weathering
- Metabolic origin of the fused aminoacyl-tRNA synthetase, glutamyl-prolyl-tRNA synthetase
- Late inception of a resiliently oxygenated upper ocean
- Model based Paleozoic atmospheric oxygen estimates: a revisit to GEOCARBSULF
- Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils
- Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2
- The timescale of early land plant evolution
- A model for the decrease in amplitude of carbon isotope excursions across the Phanerozoic
- Tectonic controls on the long-term carbon isotope mass balance
- Oceans on the edge of anoxia
- A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic
- A Pleistocene ice core record of atmospheric O2 concentrations
- Earliest land plants created modern levels of atmospheric oxygen
- Continental arc volcanism as the principal driver of icehouse-greenhouse variability
- Modelling the impact of pulsed CAMP volcanism on pCO2 and {delta}13C across the Triassic-Jurassic transition
- Sufficient oxygen for animal respiration 1,400 million years ago
- Body-size reduction in vertebrates following the end-Devonian mass extinction
- Long-term climate forcing by atmospheric oxygen concentrations
- A 30 Myr record of Late Triassic atmospheric pCO2 variation reflects a fundamental control of the carbon cycle by changes in continental weathering
- Ocean acidification and the Permo-Triassic mass extinction
- When conifers took flight: a biomechanical evaluation of an imperfect evolutionary takeoff
- The Origin and Early Evolution of Roots
- TAPHONOMY OF CAMBRIAN PHOSPHATIC SMALL SHELLY FOSSILS
- Oxygen and animals in Earth history
- Phosphorus sources for phosphatic Cambrian carbonates
- Environmental changes in the Late Ordovician-early Silurian: Review and new insights from black shales and nitrogen isotopes
- Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record
- Section 7. Synthesis of Ocean-Atmosphere-Carbonate Sediment Evolution During the Phanerozoic
- Section 6. Deep Time: Modelling of Atmospheric CO2 and the Marine CO2-Carbonic Acid-Carbonate System
- Natural history of a plant trait: branch-system abscission in Paleozoic conifers and its environmental, autecological, and ecosystem implications in a fire-prone world
- Systems paleobiology
- Section 9. The History of the Iron Biogeochemical Cycle
- Modeling the evolutionary rise of ectomycorrhiza on sub-surface weathering environments and the geochemical carbon cycle
- Pulse of atmospheric oxygen during the late Cambrian
- Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity
- Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years
- Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish
- Geochemical and palynological study of the Upper Famennian Dasberg event horizon from the Holy Cross Mountains (central Poland)
- ENVIRONMENTAL AND ECOLOGICAL VARIABILITY OF MIDDLE DEVONIAN (GIVETIAN) FORESTS IN APPALACHIAN BASIN PALEOSOLS, NEW YORK, UNITED STATES
- Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model
- Atmospheric oxygen level affects growth trajectory, cardiopulmonary allometry and metabolic rate in the American alligator (Alligator mississippiensis)
- Limits for Combustion in Low O2 Redefine Paleoatmospheric Predictions for the Mesozoic
- Cybertectonic Earth and Gaia's weak hand: sedimentary geology, sediment cycling and the Earth system
- Comment: Mesozoic Atmospheric Oxygen: (Comment on "MAGic: A phanerozoic model for the geochemical cycling of major rock-forming components" by Rolf S. Arvidson, Fred T. Mackenzie and Michael Guidry, American Journal of Science, v. 306, p. 135-190.)
- Middle-Late Permian mass extinction on land
- The Weathering of Sedimentary Organic Matter as a Control on Atmospheric O2: II. Theoretical Modeling
- Hypoxia, Global Warming, and Terrestrial Late Permian Extinctions